Top Cross Section Measurements at the Tevatron

Alison Lister
Université de Genève
On behalf of the CDF and D0 Collaborations
Over 10 fb$^{-1}$ delivered

Presenting today

Delivered To tape
Top Physics

Goal is to measure the top quark as precisely as possible at the Tevatron
Get a complete picture of the heaviest quark?
Signs of weakness of the SM?
Top Event Decays

- Standard Model
 - BR(t→Wb) ~100%
- Top events are characterised by the decay of the W boson

“Leptons” are only electrons and muons
Top Quark Pair Production Cross Section

Measurements differ in

- W-decay channel
- Analysis cuts
- Background composition
- Background estimation methods
- Luminosity determination

\[
\sigma_{t\bar{t}} = \frac{N_{\text{data}} - N_{\text{bck}}}{\epsilon \cdot A \cdot L}
\]

\(A\) : acceptance
\(\epsilon\) : efficiency
\(L\) : luminosity
Lepton+Jets Channel

- Fit the Neural Network based flavor separator and nJet spectrum
- Binned Poisson Likelihood fitter

Selection (standard CDF l+j)
- 1 lepton \(p_T > 20 \) GeV
- MET > 20 GeV
- \(\geq 1 \) jet ET > 20 GeV
- \(\geq 1 \) identified b-jet
- QCD veto cuts

Systematics
- For each source
 - Make additional templates
 - Compare event yields relative to nominal
 - Interpolated to a function
 - Included in fit as multiplicative factors to template normalisation

\[\sigma_{\text{ttbar}} = 7.64 \pm 0.57^{\text{(stat+syst)}} \pm 0.45^{\text{(lumi)}} \text{ pb} \approx 9.5\% \]
3 methods
- Counting method using b-tagging
 - 24 independent measurements combined
 - \(W+\text{jets} \) constrained from data
- Kinematic method
 - ‘Random Forest’ of 200 decision trees
 - 6 input variables
 - Binned Max Likelihood fit to output
- Combined method
 - Use b-tagging and kinematic information
 - Constrain from data \(W+ \) heavy flavour relative to \(W+ \) light flavour
- Systematics as ‘nuisance parameters’ (normalisation only)

\[\sigma_{\text{t\bar{t}} \to \ell+3\text{jets}} = 7.78 \pm 0.25^{+0.73}_{-0.59} \text{pb} \]
Dilepton Channel

- Selection
 - 2 opposite charge leptons
 - 1 isolated ‘tight’ lepton $p_T > 20$ GeV
 - 1 ‘looser’ lepton $p_T > 20$ GeV
 - ≥ 2 jets
 - $E_T > 15$ GeV, $|\eta| < 2.5$
 - Missing transverse energy (MET) > 25 GeV
 - Z-veto and J/Ψ-veto
 - Summed transverse energy: $H_T > 200$ GeV
 - For b-tagged version: ≥ 1 identified b-jet

- Dominant systematics
 - Jet corrections (~3.3%)
 - Lepton ID (~2.2%)
 - B-tagging (~4.1%)

\[
\sigma_{\text{pre-tag}} = 7.40 \pm 0.58_{\text{(stat)}} \pm 0.63_{\text{(syst)}} \pm 0.45_{\text{(lumi)}} \text{ pb}
\]
\[
\sigma_{\text{b-tag}} = 7.25 \pm 0.66_{\text{(stat)}} \pm 0.47_{\text{(syst)}} \pm 0.44_{\text{(lumi)}} \text{ pb}
\]
Dilepton Channel

- Similar event selection
 - Small changes but same principles
 - 2 ‘tight’ leptons

- **Final discriminant**
 - B-tagging Neural Network (NN) discriminant
 - Use the smallest value from the leading 2 jets

- Simultaneous fit in 4 regions
 - (ee, $\mu\mu$, eμ) + 2 jets
 - eμ + 1 jet

- Systematics as Gaussian constrained nuisance parameters

\[\sigma_{\|} = 7.36^{+0.90}_{-0.79} \text{ (stat + syst)} \text{ pb} \hspace{1cm} \sim 11\% \]

\[\sigma_{\text{ttbar}} = 7.56^{+0.63}_{-0.56} \text{ (stat + syst)} \text{ pb} \hspace{1cm} \sim 8\% \]
Tau+Jets Channel

- World first
 - Previous measurements: tau+lepton+jets
- Investigate properties of only third generation fermions in single process
 - Looking for anomalous branching ratios to taus
- Semi-hadronic tau decays
 - Taus to leptons hard to distinguish from direct leptons
 - Reconstructed using a neural network
- Using multijet trigger: ≥4 jets
- Expect ~15% signal

\[\sigma_{\text{ttbar}} = 6.9 \pm 1.2^{+0.8}_{-0.7} \text{(stat)} \pm 0.4 \text{(lumi)} \text{ pb} \quad \sim 9\% \]
MET + b-jets Channel

- Measuring the Top Pair background to Higgs search in MET+b-jet
- No lepton ID (veto on leptons)
- Require ≥1 identified b-jet
- Dominant background QCD
 - S:B is 1:15
 - From mis-measured jets leading to MET
 - From semi-leptonic b-quark decays
 - Reduced through a cut on a Neural Network (NN)
 - 15 input variables
 - S:B is 1:6
- Another NN isolates ttbar from other backgrounds
 - 5 input variables (incl. QCD NN)

\[\sigma_{\text{ttbar}} = 7.12^{+1.20}_{-1.12} \, \text{(stat+syst)} \, \text{pb} \approx 16\% \]
Single Top Quark Production Cross Section

s-channel
$\sigma_{SM} \sim 1 \text{ pb}$

\bar{q}' q W^+ t

\bar{b}

t-channel
$\sigma_{SM} \sim 2.2 \text{ pb}$

g b W

\bar{b} t

Associated production (t and W) Negligible at the Tevatron
Single Top

- Measure s-channel and t-channel separately
 - Independent of relative rate

- Many different triggers combined
 - Maximise the acceptance

- ≥1 b-tagged jet
 - S:B 1:33 for 1 b-tag
 - S:B 1:50 for 2 b-tags

- Use 3 MVA techniques
 - Boosted Decision Trees
 - Bayesian Neural Network (BNN)
 - Neuroevolution of Augmented Topologies (NEAT)
 - Combined into an additional BNN (BNNComb)
 - Only ~70% correlated with each other
 - All treat s-channel as background for training

- Fit simultaneously s- and t-channel cross sections

\[
\begin{align*}
\sigma_{pp\rightarrow tqb+X} &= 2.90 \pm 0.59 \text{ pb} \\
\sigma_{pp\rightarrow tb+X} &= 0.98 \pm 0.64 \text{ pb}
\end{align*}
\]

t-channel:

~5.5 sigma

(4.6 exp)
Conclusions And Outlook

- Many precision top quark measurements being carried out at the Tevatron
- Precision of cross section measurements now similar to theoretical uncertainties
 - Single best measurement has total uncertainty of ~7%
 - Legacy measurements!!!
- All measurements are consistent with the Standard Model ... unfortunately 😊

DØ Run II

![Graph showing precision measurements](image)

lepton+jets (topo + b-tagged, PRD)
- Precision: 5.3 fb⁻¹
- Result: 7.65 ± 0.25 ± 0.75 pb

dileptons (topo + b-tagged)
- Precision: 5.3 fb⁻¹
- Result: 7.27 ± 0.45 ± 0.76 pb

lepton+track (b-tagged)
- Precision: 1.0 fb⁻¹
- Result: 5.0 ± 1.6 ± 0.9 pb

tau+lepton (b-tagged)
- Precision: 2.2 fb⁻¹
- Result: 7.32 ± 1.34 ± 1.20 pb

tau+jets (b-tagged, PRD)
- Precision: 1.0 fb⁻¹
- Result: 6.30 ± 1.15 ± 0.72 pb

alljets (b-tagged, PRD)
- Precision: 1.0 fb⁻¹
- Result: 6.9 ± 1.3 ± 1.4 pb

m_{top} = 175 GeV
- CTEQ6.6M

Assume m_t = 172.5 GeV/c²

Dilepton
- L = 5.1 fb⁻¹
- Result: 7.40 ± 0.58 ± 0.63 ± 0.45 pb

Lepton+jets (topological)
- L = 4.6 fb⁻¹
- Result: 7.82 ± 0.38 ± 0.37 ± 0.15 pb

Lepton+jets (b-tagged)
- L = 4.3 fb⁻¹
- Result: 7.32 ± 0.36 ± 0.59 ± 0.14 pb

All-hadronic
- L = 2.9 fb⁻¹
- Result: 7.21 ± 0.50 ± 1.10 ± 0.42 pb

MET+3jets
- L = 2.2 fb⁻¹
- Result: 7.99 ± 0.55 ± 0.76 ± 0.46 pb

MET+2/3jets
- L = 5.7 fb⁻¹
- Result: 7.11 ± 0.49 ± 0.96 ± 0.43 pb

(stat) ± (syst) ± (lumi)