The Hidden Valley Scenario: A Generator of Models with Exotic Phenomenology

Matt Strassler
Rutgers University
Plan

Mixed audience – Will focus on motivation and general implications

- What is a Hidden Valley?
- The HV FAQ
- General predictions of HV
- Strategies to look for HVs
Cartoon of Particle Theory of Recent Decades

Standard Model
Cartoon of Particle Theory of Recent Decades

- Standard Model
- Super-symmetry
- Little Higgs
- Warped Extra Dimensions
- Flat Extra Dimensions

Address Hierarchy Problem
Cartoon of Particle Theory of Recent Decades

Standard Model

Super-symmetry

Little Higgs

Warped Extra Dimensions

Flat Extra Dimensions

Address Hierarchy Problem

mSUGRA

mGMSB

mLH

mRS

mADD

MET

photons + MET

t', W', Z', ...

Spin 2 resonances

monojets photons black holes

See for example talks by C. Wagner, B. Grinstein
Important remarks

- I have presented only some simple, representative models. By no means should the particularly predictions of these models be considered general.

- For instance, the relation between the gaugino masses may be different from the one presented above, leading to different phenomenology. Anomaly mediation, in which the gaugino masses are proportional to the beta functions is an example.

- There may also be extended gauge symmetries that can affect the dynamics, particle content and RG evolution of parameters, as well as extra chiral fields, for instance singlets. An example will be presented below.

- The exact dynamics at the weak scale and the origin and nature of supersymmetry breaking is still unknown. We expect experiments to guide us in that direction. Marcela Carena will discuss some of these subjects. Collider signatures will be presented later.
Address Hierarchy Problem

Standard Model

Hidden Valley?
Super-symmetry
Hidden Valley?
Little Higgs
Hidden Valley?
Warped Extra Dimensions
Hidden Valley?
Flat Extra Dimensions

Address Minimalism Bias
A Hidden Valley sector may qualitatively change standard phenomenological signals.
What is a “Hidden Valley”?

A unexpected place …

… of beauty and abundance …

… discovered only after a long climb …
What is a “Hidden Valley”?

- Take any “Hidden Sector” of particles and forces
 - Matter not charged under the known gauge forces (EM, weak, strong)
 - May have very light particles (<< 100 GeV)
- If mass gap ...
 - No massless particles (no unbroken scale invariance)
 - ...and coupled to SM at the 100 MeV – 100 TeV scale
 - Many different mechanisms to do this
- Then some new heavy particles (or even W/Z/t) may decay to hidden sector
- And (if mass gap not too small)
 - some hidden particles may decay back to SM particles
 - On measurable time scales!!
 ➤ Remarkable range of diverse and unusual experimental signatures

Very limited constraints from colliders, cosmology, precision tests
What is a “Hidden Valley”?

- Take any “Hidden Sector” of particles and forces
 - Matter not charged under the known gauge forces (EM, weak, strong)
 - May have very light particles ($<< 100$ GeV)

- If mass gap …
 - No massless particles (no unbroken scale invariance)
 - …and coupled to SM at the 100 MeV – 100 TeV scale
 - Many different mechanisms to do this

- Then some new heavy particles (or even $W/Z/t$) may decay to hidden sector
- And (if mass gap not too small) some hidden particles may decay back to SM particles
 - On measurable time scales!!
 - Remarkable range of diverse and unusual experimental signatures

Very limited constraints from colliders, cosmology, precision tests
The HV FAQ
FAQ: Why is minimalism bias a problem at LHC?

A much bigger problem at a hadron collider than it would be elsewhere

- LHC produces $10^{13} – 10^{16}$ collisions per year
- Only (!) 10^{9-10} are stored
 - Trigger with as little as 10^{-6} overall efficiency – requires good strategies
- 10^9 is a huge number; perhaps few 1000 are signal of new physics
 - Event reconstruction must be automated
 - New physics search analysis selects events with typical 10^{-6} efficiency

Any failure of trigger, reconstruction or analysis strategy can eliminate a signal
 - If no one proposes a particular phenomenological signature,
 - No one may ever look for it
 - **No one may find it accidentally using standard methods!!!**
 - Plenty of examples at Tevatron and even LEP
FAQ: Isn’t this an infinite problem?

- There are an infinite number of types of hidden valley models

This is a very large problem, but not infinite, and not entirely out of control

Many models give similar signatures
- And some signatures arise more easily than others
- And not all signatures are theoretically reasonable
 Thus classification problem can be divided and organized

Also there are general characteristics that are
- Very common in HV models
- Much less common in the literature on minimal models

In this sense, models with an HV make a general set of predictions
Typical of Hidden Valleys (and not minimal models)

New neutral particles – may be
- Many in Number
- Light
- Long-Lived
 - Possibly w/ displaced decays
- Lorentz-Boosted
- High in Multiplicity
- Oddly Clustered/Distributed

Produced most commonly in decays of
- Higgs(es)
- LSP/LKP/LTP (not necessarily neutral)
- Techni-resonances ; RS-gravitons
- Z’
- Quirk-onium
- Black Holes or Excited Strings
- Radiated off new particles
- Rare Z/W decays
Typical of Hidden Valleys (and not minimal models)

New neutral particles – may be
- Many in Number
- Light
- Long-Lived
 - Possibly w/ displaced decays
- Lorentz-Boosted
- High in Multiplicity
- Oddly Clustered/Distributed

Produced most commonly in decays of
- Higgs(es)
- LSP/LKP/LTP (not necessarily neutral)
- Techni-resonances ; RS-gravitons
- Z'
- Quirkonium
- Black Holes or Excited Strings
- Radiated off new particles
- Rare Z/W decays

Energy

New Heavy Particle(s)

Hidden Sector Dynamics
Typical of Hidden Valleys (and not minimal models)

New neutral particles – may be
- Many in Number
- Light
- Long-Lived
 - Possibly w/ displaced decays
- Lorentz-Boosted
- High in Multiplicity
- Oddly Clustered/Distributed

Produced most commonly in decays of
- Higgs(es)
- LSP/LKP/LTP (not necessarily neutral)
- Techni-resonances ; RS-gravitons
- Z’
- Quirkonium
- Black Holes or Excited Strings
- Radiated off new particles
- Rare Z/W decays

New decay channels and signatures absent in minimal version of favorite model
Interesting for other communities?

- **Motivation for Luminosity Frontier**
 - Super B factories, GigaZ
 - Extreme-intensity low-energy e+e- (as at JLAB)
 - Beam dumps

- Could give new cosmic ray signals
 - probably out of reach now but not forever

- Possible Source of Sterile Neutrinos

- Possible Home of Dark Matter
 - with cosmological and astrophysical implications

- Probably not connected with flavor … but…

However,
FAQ: Isn’t HV unmotivated?

- 2006: MJS and Zurek:
 one general motivation for hidden valleys is dark matter.

 - PAMELA/ATIC results motivate specific subclass of hidden valleys
 (“dark sectors”) with a dark vector boson mixing with photon.

LESSONS:

- Caution: Motivation is time-dependent.

- Nature has handed us apparently unmotivated phenomena before.
 - Who ordered the muon?
 - Why expect neutral currents?
Typical of Hidden Valleys (and not minimal models)

New neutral particles – may be
- Many in number
- Light
- Long-Lived
 - Possibly displaced decays
- Lorentz-Boosted
- High in Multiplicity
- Oddly Clustered/Distributed

Produced most commonly in decays of
- Higgs(es)
- LSP/LKP/LTP (not necessarily neutral)
- Techni-resonances; RS-gravitons
- Z’
- Quirk-onium
- Black Holes or Excited Strings
- Radiated off new particles
- Rare Z/W decays

EXAMPLE:

Dark Sector with Dark Photon and Lepton-Jets

Pospelov et al.
Arkani-Hamed et al
Arkani-Hamed & Weiner
FAQ: Isn’t HV unmotivated?

Beyond dark matter, two other important motivations

- String theory **NEVER** generates the simplest version of any model
 - If string theory predicts anything, it is that the world will not be minimal

- GMSB SUSY breaking can leave low energy remnants

But the experimental motivation described above is perhaps the most important
FAQ: Is a HV a confining hidden sector?

Hidden Confining Sector → Electric-Magnetic Duality → Hidden Higgsed Sector

Hidden Higgsed Sector ↔ Gauge-String (AdS/CFT) Duality

Hidden Warped Extra Dimension(s) ↔ Electric-Magnetic Duality

Gauge-String (AdS/CFT) Duality

Logically Impossible for one to be a HV but not the others
FAQ: Do HVs predict highly displaced vertices (from new long-lived particles)?

Not all Hidden Valley models will give this signature – BUT

- HV sectors make long-lived particles with displaced vertices much more likely
 - Many new metastable particles [just like QCD hadrons]
 - Widely varying lifetimes [just like QCD hadrons]

- Compare with GMSB: only one new metastable particle (NLSP)

Note that if these arise in low-energy processes, triggering can be issue

Reconstruction can be an issue if lifetimes are sufficiently long
New Decays: Higgs

- Easy to give H exotic decays using new particles (including HV sectors)
 - $H \rightarrow aa \rightarrow 4\ b's, 4\ taus$
 - $H \rightarrow ss \rightarrow aaaa\rightarrow 8\ b's$
 - $H \rightarrow vv \rightarrow 4\ leptons$
 - $H \rightarrow (vvvv) (vvvv)\ [lepton-jets]$
 - … … …

If no Higgs by 2014-15 in standard channels, need open minds!

- Some of the new particles can be long-lived

Because Higgs is light, in some cases this creates an urgent issue: trigger
New Decays: SUSY

mSUGRA: jets (leptons) + MET

GMSB
more complicated
(often easier)

- If Gravitino LSP ➔
- Lightest SM sparticle is NLSP
 - NLSP decays to partner + MET
 (Gravitino)
 - so not necessarily neutral
 - and may be long-lived

With HV
much more complicated
(may be easier or harder)

- If LSP is in HV ➔
- Lightest SM sparticle not LSP
 - SM LSP decays to partner + HV particle(s)
 - so not necessarily neutral
 - and may be long-lived

- Then HV particles might decay
 - and may be long-lived
SUSY decays to a hidden valley

The traditional missing energy signal is replaced with multiple soft jets/leptons, reduced missing energy, and possibly multiple displaced vertices.

The lightest hv-sparticle (LSP)

The lightest hv-sparticle (LSP)
Stable Neutralino

Unstable Neutralino Decaying to hv-Sector

Squark-Antisquark Production at LHC

Hacked simulation using Hidden Valley Monte Carlo 1.0 Mrenna, Skands and MJS

Average MET can drop significantly
New Decays: Gravity Effects

- Take RS: If couplings of a KK graviton are universal [not guaranteed]
- And the HV has more degrees of freedom than the SM [easily could]

Then the dominant decays of a KK graviton will be to HV particles, not SM

- Resonance could be much wider than expected
- Much lower peak cross-section for photon pairs, electron/muon pairs

- Could be largely invisible
- Or dominant decays to two jets containing multiple dark photons
- Or dominant decays to spherical distribution of dozens of b pairs
- Or … etc … etc … etc …????

Same discussion applies for Black Holes, ADD graviton exchange
Lessons:

- Conventional wisdom about what a model predicts assumes minimalilty
- Even slightly nonminimal models can look very different
 - (mSUGRA \rightarrow mGMSB, MSSM\rightarrowNMSSM)
- A hidden sector can be vastly non-minimal
 - Many new degrees of freedom, wide range of decay channels
 - Complicated dynamics that theorists may not even be able to predict

Thus: any given solution to hierarchy problem can give vast array of signatures

So what should we do?

- There are too many possible models for model-based searches.
- Return to the HV predictions, pursue quasi-model-independent approaches.
- Focus especially on non-standard event selection and analysis techniques
Early Search Strategies

Non-Standard Selection

- [Light] dilepton resonance
 - possibly boosted and/or non-isolated
 - e.g. lepton(ic)-jets
- Inclusive sample? Swamped!
- Refined samples with less background
 - requiring jets (perhaps many)?
 - requiring large HT?
 - requiring unusual event shape?
 - Etc.
- Loosen isolation for one or both leptons?
 - Sample with 3 or more leptons?
- [Light] diphoton resonance
- [Light] dilepton/diphoton edge/endpoint

Will all of these be picked up efficiently by global search strategies?
Early Search Strategies

Non-Standard Analysis

- Heavy-flavor resonances
 - Events with many b-tagged jets or many displaced tracks
 - High-pT jet(s) may be b-pair -- so use jet sub-structure

- Long-lived particles
 - Displaced jet pairs/triplets/quartets
 - Displaced lepton pairs (or lepton and jets)
 - Displaced photons
 - Careful – not necessarily isolated

- Plenty of others but this should keep us busy for a couple of years
Summary

- VERY easy to overturn conventional wisdom; should raise concern

- Adding a hidden valley (hidden sector with mass gap) to SM or BSM theory can drastically and qualitatively change its phenomenological signatures

- Some of the novel signals are not likely to be picked up using the hadron collider searches appropriate to minimal BSM models

- Even if nature does not have a hidden valley, it should be clear that a few new triggers, smarter and more flexible reconstruction codes, and a wider variety of analysis strategies are all needed for robust searches at the LHC

- LHC theorists and experimentalists must work closely together to make sure gaps through which new physics could slip are firmly closed

- Luminosity frontier, cosmic rays, astro/cosmo need further development