LHCb physics prospects for CP violation measurements with 0.2 and 1 fb$^{-1}$

Anton Poluektov

The University of Warwick, UK,
Budker Institute of Nuclear Physics, Novosibirsk, Russia

15-20 July 2010

On behalf of the LHCb collaboration
CP violation in the Standard Model

CKM matrix (Wolfenstein parametrization):

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
= \begin{pmatrix}
1 - \frac{\lambda^2}{2} & \frac{\lambda}{A} & A\lambda^3(\rho - i\eta) \\
-\frac{\lambda}{A} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix}
\]

Unitarity: \(V_{ij}^* V_{jk} = \delta_{ik}\)

b – d triangle (i = b, k = d)

\[
V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0
\]

\[
\begin{align*}
V_{ud} V_{ub}^* & \sim \lambda^2 \\
V_{cd} V_{cb}^* & \sim \lambda^2 \\
\alpha(\phi_2) & \quad V_{ts} V_{tb}^* \sim \lambda^2 \\
\gamma(\phi_3) & \quad \beta(\phi_1)
\end{align*}
\]

b – s triangle (i = b, k = s)

\[
V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} = 0
\]

\[
\begin{align*}
V_{ts} V_{tb}^* & \sim \lambda^2 \\
V_{cs} V_{cb}^* & \sim \lambda^2 \\
\beta_s & = 21.7^\circ \pm 0.9^\circ \\
\alpha & = 89^\circ \pm 4^\circ \\
\gamma & = 70^\circ +14^\circ \\
\beta_s & = 0.01811 \pm 0.00085 \text{ rad}
\end{align*}
\]
CP violation in heavy flavors

The way to search for New Physics, complementary to direct high-energy searches.

- CP violation in B system (B^+, B^0)
 - Search for NP by comparing CPV parameters in loop- and tree-dominated decays.
- CP violation in B_s system
 - CPV phase ϕ_s: small in SM, large NP contribution possible.
- CP violation in charm
 - Mixing observed (in the combination, but no observation in the single experiment so far), no CPV visible (neither direct nor in mixing).
Flavor physics at the LHC

\(\bar{b}b \) cross-section: 0.5 mb (14 TeV)
Flavor ratio: \(B^+ : B^0 : B_s : \Lambda_b : B_c = 40% : 40% : 10% : 10% : 0.1\% \).

Altas, CMS

- Central detectors, \(|\eta| < 2.5 \)
- High \(p_t \) trigger threshold

LHCb

- Optimized \(B \) meson acceptance
- Forward spectrometer, \(2 < \eta < 5 \) (15 – 300 mrad)
- Softer low \(p_t \) triggers
- Efficient for hadronic \(B \) decays
- Design luminosity \(2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \), 2 fb\(^{-1}\) per nominal year.
Flavor physics at the LHC: LHCb experiment

\(b\bar{b}\) cross-section: 0.5 mb (14 TeV)
Flavor ratio: \(B^+ : B^0 : B_s : \Lambda_b : B_c = 40\% : 40\% : 10\% : 10\% : 0.1\%\).

- \(\sqrt{s} = 7\) TeV, \(b\bar{b}\) cross-section reduced by \(\sim 50\%\) compared to 14 TeV. Can partially compensate by lower background, lower thresholds.
- Integrated luminosity milestones:
 - 0.2 fb\(^{-1}\) by the end of 2010
 - 1 fb\(^{-1}\) in 2011.
- \(> 200\) nb\(^{-1}\) collected, \(\sim 10\) nb\(^{-1}\) analysed (first results next week at ICHEP!).
LHCb detector: features

Needed for efficient B physics:

Good PID ($\pi/K/p/\mu$ separation):
- B decay products separation
- Flavor tagging ($p < 100$ GeV)

Good vertexing ($\sigma_t \sim 40$ fs):
- Decay time measurement, esp. for fast B_s oscillations
- Background suppression (vertex separation)

![Diagram showing B decays and tagging](image)
Interference between decays $B_s \to J/\psi(\mu\mu)\phi(KK)$ with and without mixing. $\phi_s(SM) = -2\beta_s = -0.036 \pm 0.002$.

Measured from the time-dependent asymmetry

$$A_{CP}(t) = -\frac{\eta_f \sin \phi_s \sin \Delta m_s t}{\cosh \Delta \Gamma_s t/2 - \eta_f \cos \phi_s \sinh \Delta \Gamma_s t/2}$$

$P \to VV$ decay. Angular analysis to separate CP-odd and CP-even states.

Flavor tagging needed for time-dependent asymmetry.

First 13 nb$^{-1}$: do not expect signal, observe components: $J/\psi \to \mu\mu$, $\phi \to KK$.
CP violation in mixing of B_s: ϕ_s phase

Expect $\sim 30000 \, B_s \rightarrow J/\psi \phi$ decays with 1 fb$^{-1}$.

$B/S \sim 2$ (mostly prompt component, easy to separate by proper time).

- CDF 5.2 fb$^{-1}$: now consistent with SM (0.8σ).
- Expect sensitivity competitive to Tevatron with 0.2 fb$^{-1}$
- $\sigma(\phi_s) \sim 0.07$ with 1 fb$^{-1}$
- If NP \sim CDF measurement, 5σ discovery with 1 fb$^{-1}$.
Flavor-specific CP-asymmetry

Charge asymmetry in semileptonic b decays: \[a_{sl}^q = \frac{\Gamma(B_q^0 \to \mu^+X) - \Gamma(B_q^0 \to \mu^-X)}{\Gamma(B_q^0 \to \mu^+X) + \Gamma(B_q^0 \to \mu^-X)} \]

D0 [arXiv:1005.2757]: Using like-sign dimuon asymmetry and inclusive charge asymmetry, \[A_{sl}^b = a_{sl}^b + a_{sl}^s = (-0.96 \pm 0.25 \pm 0.15)\% \]

\[A_{sl}^b(SM) = -2.3^{+0.5}_{-0.6} \times 10^{-4}. \]

Need good control of systematic factors:

- Background asymmetry
- Detector asymmetry δ_c (flip B-field)
- Production asymmetry δ_p
 (difficult at pp-machine!)

Time-dependent charged asymmetry:

\[A_{sl}^q(t) = \frac{a_{sl}^q}{2} - \frac{\delta_q^c}{2} - \left(\frac{a_{sl}^q}{2} + \frac{\delta_q^p}{2} \right) \frac{\cos \Delta m_q t}{\cosh \Delta \Gamma_q t/2}. \]

Take time-independent component:

\[\rightarrow \text{get rid of } \delta_p \]

Measure difference $\Delta A_{sl}^{s,d} = A_{sl}^s - A_{sl}^d$:

\[\rightarrow \text{cancel } \delta_c \]

Using $B_{s,d}^0 \to D_{s,d}(KK\pi)\mu\nu$

\[\sigma(\Delta A_{fs}) \approx 10^{-3} \text{ with } 1 \text{ fb}^{-1} \]
CP violation in B decays with trees

Provides SM reference for loop-induced decays.
Angle γ appears in the interference of amplitudes with V_{ub} and another CKM element.

- Interference between decays with D^0 and \bar{D}^0 (B^\pm, B^0 self-tagged). Need D^0 and \bar{D}^0 to decay into the same final state:

$$D^0 \rightarrow KK, K\pi, K_S\pi\pi, \ldots$$

- Interference between decays with and without mixing (for B^0, B_s time-dependent). Can use charged D.

Many decay modes involved with comparable sensitivity.
$B^\pm \rightarrow DK^\pm$ time-integrated measurements

CPV magnitude determined by $r_B = \frac{|A(B^+\rightarrow D^0K^+)|}{|A(B^+\rightarrow D^0K^+)|}$, strong phase difference δ_B

$D \rightarrow \pi\pi, KK, K\pi$

Observables - charge asymmetries and allowed-suppressed ratios:

$A_{ADS} \equiv \frac{B(B^-\rightarrow D(K^+\pi^-)K^-) - B(B^+\rightarrow D(K^-\pi^+)K^+)}{B(B^-\rightarrow D(K^+\pi^-)K^-) + B(B^+\rightarrow D(K^-\pi^+)K^+)}$

$R_{ADS} = \frac{Br(B^\pm\rightarrow [K^\mp\pi^\pm]DK^\pm)}{Br(B^\pm\rightarrow [K^\mp\pi^\pm]DK^\pm)}$

$D \rightarrow K_S\pi\pi, K_SKK$

Observable - D decay Dalitz plot density (different for B^+ and B^-):

$|A_\pm|^2 = \left| \begin{array}{c} \end{array} \right|^2 + \text{re}^{i\delta_B \pm i\gamma}$

Input from charm studies (D amplitude ratios, strong phase differences — CLEO).
Practically no theoretical uncertainty.
Measured parameters: r_B, δ_B, γ.
γ sensitivity depends on r_B, δ_B values.
Today (13 nb$^{-1}$): $B \to D\pi$

signal is seen.

2010 (0.2 fb$^{-1}$): Precision comparable to B factories ($\sigma_\gamma \sim 12 - 15^\circ$)

2011 (1 fb$^{-1}$):

- $B \to D(hh)K$: $N_{signal} \sim 3000$ events
- $B \to D_{sup}(K\pi)K$: $N_{signal} \sim 400$ events
- $D \to D(K_s\pi\pi)K$: $N_{signal} \sim 1500$ events.
- Combined $\sigma_\gamma \sim 6 - 8^\circ$
CP violation in charmless B decays

- Charmless two-body decays can probe γ.
- Observables: time-dependent asymmetries

$$A_f^{CP}(t) = \frac{A_f^{dir} \cos \Delta mt + A_f^{mix} \sin \Delta mt}{\cosh \Delta \Gamma t/2 - A_f^{\Delta} \sinh \Delta \Gamma t/2}$$

Need flavor tagging and B decay time measurements.

- Measurable A_f^{mix} and A_f^{dir} contain information about γ. Can be extracted by measurements with B^0 and B_s decays to $f = \pi\pi, KK, K\pi$, using U-spin symmetry ($d - s$ SU(3) subgroup).
Measurements with B^0 performed by B factories. 1.9σ disagreement between Belle and BaBar measurements.

LHCb competitive with B factories for $A_{\pi\pi}$ measurement with 1 fb$^{-1}$, can measure A_{KK} from B_s.

<table>
<thead>
<tr>
<th></th>
<th>Current value</th>
<th>0.2 fb$^{-1}$</th>
<th>1 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{\pi\pi}^{dir}$</td>
<td>0.38 ± 0.06</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>$A_{\pi\pi}^{mix}$</td>
<td>−0.65 ± 0.07</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>A_{KK}^{dir}</td>
<td>-</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>A_{KK}^{mix}</td>
<td>-</td>
<td>0.11</td>
<td>0.05</td>
</tr>
</tbody>
</table>
CPV in charm

D mixing: $D_{1,2} = pD^0 \pm q\bar{D}^0$

- $x = (M_2 - M_1)/\Gamma$,
- $y = (\Gamma_2 - \Gamma_1)/2\Gamma$.
- $q/p \neq 1 \Rightarrow$ CPV in mixing.

Example of a first-year measurement for LHCb: CPV in $D \to hh$.

Observables:

- $y_{CP} = \tau(K\pi)/\tau(KK) - 1$,
- $A_{\Gamma} = \frac{\tau(D^0 \to KK) - \tau(\bar{D}^0 \to KK)}{\tau(D^0 \to KK) + \tau(\bar{D}^0 \to KK)}$

Flavor-tagged signals $D^*\pm \to D^0\pi^\pm$, $D^0 \to KK$, $K\pi$ already seen:

Can reach $\sigma(y_{CP}), \sigma(A_{\Gamma}) \sim 0.1\%$ ($\times 3$ better than current limit) with only 0.1 fb$^{-1}$.
Many possibilities to search for CPV at LHCb with first data:

- $B_s \rightarrow J/\psi \phi$ — competitive with CDF/D0 with 0.2 fb$^{-1}$.
- Flavor-specific charge asymmetry: measurement complementary to D0: $\sigma(\Delta A_{fs}) \sim 10^{-3}$ with 1 fb$^{-1}$.
- γ measurements with $B \rightarrow DK$ (different D decay modes), time-dependent $B_s \rightarrow D_s K$ (not covered here) — precision comparable to B factories with 0.2 fb$^{-1}$ ($\sigma_\gamma \sim 15^\circ$), $\sigma_\gamma \sim 6 - 8^\circ$ with 1 fb$^{-1}$.
- CPV in charmless decays: $B \rightarrow \pi \pi, K \pi, KK$ — comparable to B factories with 1 fb$^{-1}$ for B^0 (solve Belle-BaBar disagreement), best constraint for B_s.
- CPV in charm mixing (e.g. y_{CP} from $D \rightarrow hh$) — \sim 3 times improvement possible with 0.1 fb$^{-1}$.

Excellent detector performance confirmed, analyses using first $O(10 \text{ nb}^{-1})$ to be reported at ICHEP.