Projections for Non-SUSY Searches at the LHC for 200pb\(^{-1}\) and 1fb\(^{-1}\)

BLOIS2010, France
July 17\(^{th}\), 2010

Isabel Pedraza-Morales
University of Wisconsin-Madison
On behalf of the ATLAS and CMS Collaboration
Brief Description of The Detectors.
(Details were given in plenary talks by L. Rossi, M. Shapiro and A. De Roeck.)

LHC sensitive to a broad array of new physics.

Discovery potential of some of these new physics final states.

Give a general feeling of what LHC groups are doing.

Selection of few benchmark analyses.

Will try to cover topics involving different experimental challenges.
ATLAS

Tracker\cite{1}
Si pixels, strips + TRT (pid)
\[\sigma(1/p_t) \approx 0.34(1 \oplus 0.44 \text{ TeV}/p_t)\text{TeV}^{-1} \]

EM Calorimeter\cite{3}
Pb + Lar
\[\sigma/E \approx 10\% \text{ GeV}^{1/2}/\sqrt{E} \oplus 0.2 \]

Had. Calorimeter\cite{1}
Fe+scintillator / Cu + Lar
\[\sigma/E \approx 60\%/\sqrt{E} \oplus 0.03 \]

Combined Muons\cite{1,2}
2\%@50\text{GeV} to 10\%@1\text{TeV}
<table>
<thead>
<tr>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker<sup>5</sup></td>
</tr>
<tr>
<td>Si Pixels, strips</td>
</tr>
<tr>
<td>$\sigma(p_T)/p_T \approx 0.17 p_T \oplus 0.05(p_T\text{ in GeV/c})$</td>
</tr>
<tr>
<td>EM Calorimeter<sup>4</sup></td>
</tr>
<tr>
<td>PbWO<sub>4</sub> crystals</td>
</tr>
<tr>
<td>$\sigma/E \approx 2.8%/\sqrt{E} \oplus 125\text{ MeV/E} \oplus 0.3%$</td>
</tr>
<tr>
<td>Had. Calorimeter<sup>6</sup></td>
</tr>
<tr>
<td>Cu+scintillator</td>
</tr>
<tr>
<td>$\sigma/E \approx 100%/\sqrt{E}$</td>
</tr>
<tr>
<td>Combined Muons<sup>6</sup></td>
</tr>
<tr>
<td>1%@50GeV to 5%@1TeV</td>
</tr>
</tbody>
</table>
Selection of few benchmark analyses

- Lepton Plus Missing Energy Final States

- Di-lepton Final States

- Lepton Plus Jets Final States.
Lepton+MET final states
W’ in the Sequential Standard Model:

- Lower bound on W’ mass (direct searches): ~1 TeV

\(\sqrt{s}=14\) TeV

CMS Preliminary

Isabel Pedraza-BLOIS2010
Discovery Potential for W’

ATLAS Preliminary Simulation

\[\sqrt{s} = 7 \text{ TeV} \]

\[M(W') \text{ [TeV]} \]

\[\text{Luminosity [pb]} \]

\[10^3 \]

\[10^2 \]

\[10^1 \]

\[W' \rightarrow e\nu \text{ 10 Events} \]

\[W' \rightarrow e\nu \text{ 5}\sigma \text{ Evidence} \]

\[W' \rightarrow \mu\nu \text{ 10 Events} \]

\[W' \rightarrow \mu\nu \text{ 5}\sigma \text{ Evidence} \]
Exclusion Limits for W'

- Exclusion
- $O(200 \text{pb}^{-1})$ up to ~1.8 TeV.
- $O(1 \text{fb}^{-1})$ up to ~2.5 TeV.
Narrow Resonances in Di-lepton final states
Z’
(mentioned by Yuri Gershtein in today’s plenary talks)

Z’ in some representative models:

<table>
<thead>
<tr>
<th>Z’ Model</th>
<th>Indirect Searches (GeV)</th>
<th>Direct Searches (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electroweak</td>
<td>LEP</td>
</tr>
<tr>
<td>Z'χ</td>
<td>680</td>
<td>781</td>
</tr>
<tr>
<td>Z'ψ</td>
<td>137</td>
<td>481</td>
</tr>
<tr>
<td>Z'η</td>
<td>619</td>
<td>515</td>
</tr>
<tr>
<td>Z'L_{LRSM}</td>
<td>860</td>
<td>804</td>
</tr>
<tr>
<td>Z'S_{SSM}</td>
<td>1500</td>
<td>1787</td>
</tr>
</tbody>
</table>

- Standard Model backgrounds
- For $Z' \rightarrow e e, \mu \mu$
 - Drell-Yan
- For $Z' \rightarrow \tau \tau$
 - ttbar
 - QCD
 - W+jets
Two well reconstructed muons
- Tracking Normalized Isolation < 5% (ATLAS)
- Opposite charged (CMS)

Z’ → ee
- 2 well reconstructed electrons
- p_T > 20 GeV (ATLAS)
- Tracking Normalized Isolation < 5% (<2% CMS)

Z’ → μ μ
- Two well reconstructed muons
- Tracking Normalized Isolation < 5% (ATLAS)
- Opposite charged (CMS)
Z'

(CERN-OPEN-2008-02)

- $Z' \rightarrow \tau\tau$
- τ selection
- Opposite charge
- $E_{t,\text{miss}}>30\text{GeV}$
- $m_{\tau}>300\text{GeV}$
- $p_{T,\text{tot}}<70\text{GeV}$
- $m_{\text{vis}}<300\text{GeV}$
- $\cos \Delta \phi_{lh}<-0.99$

($\sqrt{s}=14\text{ TeV}$)

(Images of figures and histograms are not transcribed.)
Discovery Potential

Z'_SSM

- $O(200 \text{ pb}^{-1})$
 - Z' at ~ 1.2 TeV.
- $O(1 \text{ fb}^{-1})$
 - Z' at ~ 1.55 TeV.
Exclusion Potential Z'

- $O(200 \text{pb}^{-1})$
 - Z' at ~ 1.2 TeV.
- $O(1 \text{fb}^{-1})$
 - Z' at ~ 1.55 TeV.
The “Technicolor Strawman Model” or TCSM is used as a benchmark model for generic strongly interacting theories.

<table>
<thead>
<tr>
<th>$m_{\rho_{TC},\omega_{TC}}$</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak mass (GeV)</td>
<td>403</td>
<td>603</td>
<td>804</td>
<td>1004</td>
</tr>
<tr>
<td>$\sigma(m)$ (GeV)</td>
<td>13</td>
<td>22</td>
<td>34</td>
<td>46</td>
</tr>
</tbody>
</table>

• Current Limit ρ_{TC} and ω_{TC} masses below 280 GeV [10]
ρ_{TC} and ω_{TC}

$\sqrt{s}=14$ TeV

ATL-PHYS-CONF-2008-004

CMS-PAS-EXO-09-007

$\sqrt{s}=14$ TeV
Discovery Potential ($\sqrt{s}=14$ TeV)

ρ_{TC} and ω_{TC}

- 1 fb$^{-1}$ -> world without Higgs.

(Considering the scaling of the production cross section for $\sqrt{s}=7$ TeV)

Isabel Pedraza-BLOIS2010
Exclusion Limits ρ_{TC} and ω_{TC}

$\sqrt{s} = 10$ TeV

- 1 fb$^{-1}$ would allow to go beyond Tevatron Limits
 (Considering the scaling of the production cross section for $\sqrt{s} = 7$ TeV)
Randall-Sundrum model addresses the hierarchy problem by adding one extra-dimension. It predicts the existence of a tower of Kaluza-Klein excitations of the graviton.

\[E^2 = \vec{p}^2 + p^2_{\text{extra}} + m^2 \]

\textbf{Graviton}

(Some description given in Carlos Wagner talk, and Yuri Gershtein)
Graviton

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>Γ_G [GeV]</th>
<th>σ_m [GeV]</th>
<th>$\sigma \cdot BR(G \rightarrow e^+e^-)$ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_G</td>
<td>k/\tilde{M}_{pl}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 GeV</td>
<td>0.01</td>
<td>0.08</td>
<td>4.6</td>
</tr>
<tr>
<td>750 GeV</td>
<td>0.01</td>
<td>0.10</td>
<td>6.4</td>
</tr>
<tr>
<td>1.0 TeV</td>
<td>0.02</td>
<td>0.57</td>
<td>7.9</td>
</tr>
<tr>
<td>1.2 TeV</td>
<td>0.03</td>
<td>1.62</td>
<td>10.3</td>
</tr>
<tr>
<td>1.3 TeV</td>
<td>0.04</td>
<td>2.98</td>
<td>11.4</td>
</tr>
<tr>
<td>1.4 TeV</td>
<td>0.05</td>
<td>5.02</td>
<td>13.1</td>
</tr>
</tbody>
</table>

- Standard Model backgrounds
- For $G \rightarrow ee$
 - Drell-Yan
 - All other backgrounds are expected to be small.
Two electrons
$p_T \geq 65$ GeV
$\cos \Delta \phi_{ee}<0$

The observed distribution includes a graviton with mass 1 TeV and coupling $\kappa / \mathcal{M}_{pl}=0.02$.

CERN-OPEN-2008-02
$\sqrt{s}=14$ TeV

ATLAS
Discovery Potential
$G \rightarrow \mu \mu$

- 200 pb$^{-1}$ -> Graviton with a mass up to 1.1 TeV,
- 1 fb$^{-1}$ up to 1.35 TeV.

CMS Preliminary
SBM-07-002, scaled to $\sqrt{s} = 7$ TeV

CMS-NOTE-2010-008
Leptons + Jets final states

Leptoquarks

<table>
<thead>
<tr>
<th>LIMITE$^{[8]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Generation</td>
</tr>
<tr>
<td>Second Generation</td>
</tr>
<tr>
<td>Third Generation</td>
</tr>
</tbody>
</table>

- Standard model background
 - Drell-Yan
 - ttbar
 - DiJets
Leptoquarks

CERN-OPEN-2008-02

$\sqrt{s}=14$ TeV
Leptoquarks

Exclusion and discovery potential /100pb$^{-1}$ for the first generation.

With 200pb$^{-1}$ would be possible to go well beyond the Tevatron limits.
Right-handed Majorana neutrinos would required the existence of a right-handed new heavy gauge bosons.

The current limit for the mass of the W_R is 715[8]

- Standard model background
 - Drell-Yan
 - $t\bar{t}$bar
 - VB pair
Left-Right Symmetric Models

• The observed correspond to the invariant mass for the $W_R \rightarrow e\nu$ and $W_R \rightarrow \mu \nu$

CERN-OPEN-2008-02

Isabel Pedraza-BLOIS2010
At 200 pb$^{-1}$, the sensitivity with \sqrt{s}=7 TeV will be enough to go beyond the current limits.
Conclusions

A selection of analyses on new predicted particles with Di-lepton, Lepton+MET and Leptons+Jets final states was presented.

LHC detectors constitute a powerful tool to discover or exclude new particles.

7 TeV studies have shown that the existence of a W' and Z' could be established at the 5 sigma level even with $O(100\text{pb}^{-1})$ of integrated luminosity.

The initial run of few tens of pb^{-1} at 7TeV would be enough to go beyond Tevatron limits in most of these models.
BACKUP
<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>7000 tons</td>
<td>12,500 tons</td>
</tr>
<tr>
<td>Diameter</td>
<td>22 m</td>
<td>15 m</td>
</tr>
<tr>
<td>Length</td>
<td>46 m</td>
<td>22 m</td>
</tr>
<tr>
<td>Peak B Field</td>
<td>2T solenoid, 3.9T (peak) BA toroid, 4.1T (peak) EC toroids</td>
<td>4T solenoid</td>
</tr>
</tbody>
</table>
The QCD cross sections at LHC are 10 to 100 times higher than at the Tevatron.
Muons

![Graph showing contribution to resolution vs. Pt (GeV/c)]

- Total
- Spectrometer entrance
- Multiple scattering
- Chamber Alignment
- Tube resolution and auto-calibration (stochastic)
- Energy loss fluctuations

![ATLAS plot showing efficiency vs. p_T (GeV)]

Efficiency vs. p_T (GeV)
With 100 pb-1, clear signals for W and Z in τ channels.

Z→ ττ can then be used to set the ET miss scale to a few %.

τ reconstruction is tricky and relies (not for very first data but soon after) on multivariate techniques.
REFERENCES

1. CERN-OPEN-2008-02
2. ATL-PHYS-PUB-2010-007
3. ATL-PHYS-PROC-2009-014
5. CMS-NOTE2006-026
6. CERN-LHCC-2006-001
7. ALEPH, DELPHI and L3 Collaborations, arxiv:hep-ex/0612034
9. CDF/PHYS/EXO/PUBLIC/10165