Recent Results from LHCf

Gaku Mitsuka (Nagoya University, Japan) for the LHCf collaboration
Outline

- Introduction and Physics motivation
- The LHCf detectors
- Status of the LHCf experiment
 - First results at $\sqrt{s}=900\text{GeV}$ and 7TeV
 - All data at $\sqrt{s}=900\text{GeV}$
 - Focusing on March-May at $\sqrt{s}=7\text{TeV}$
- Conclusions and Future prospects
Totally ~40 collaborators

INFN, Univ. di Firenze

A. Tricomi
INFN, Univ. di Catania

D. Macina, A-L. Perrot
CERN

M. Haguenauer
Ecole Polytechnique

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University

Solar-Terrestrial Environment Laboratory, Nagoya University

Y. Muraki (Spokes person)
Konan University

K. Kasahara, M. Nakai, Y. Shimizu, S. Torii
Waseda University

K. Yoshida
Shibaura Institute of Technology

T. Tamura
Kanagawa University
Introduction

The LHCf experiment...

- aims to reduce the uncertainty of hadron interaction models around the TeV energy region using LHC, which are mainly used in cosmic ray experiments.
- observes neutral particles produced by the p-p collisions emitted in the very forward (including zero degree, $\eta>8.4$), equivalent to air-shower of cosmic ray.
- can discriminate the existing interaction models (e.g. DPMJET3, QGSJET, etc...) by comparison and provide crucial data for building future models.
- will contribute the ultra high-energy cosmic ray observations with high-precision.
Introduction

The LHCf experiment...

- aims to reduce the uncertainty of hadron interaction models around the TeV energy region using LHC, which are mainly used in cosmic ray experiments.
- observes neutral particles produced by the p-p collisions emitted in the very forward (including zero degree, η > 8.4), equivalent to air-shower of cosmic ray.
- can discriminate the existing interaction models (e.g. DPMJET, QGSJET) and provide crucial data for building future models.
- will contribute the ultra high-energy cosmic ray observations with high-precision.
Introduction

The LHCf experiment...

- aims to reduce the uncertainty of hadron interaction models around the TeV energy region using LHC, which are mainly used in cosmic ray experiments.
- observes neutral particles produced by the p-p collisions emitted in the very forward (including zero degree, \(\eta > 8.4 \)), equivalent to air-shower of cosmic ray.
- can discriminate the existing interaction models (e.g. DPMJET3, QGSJET, etc...) by comparison and provide crucial data for building future models.
- will contribute the ultra high-energy cosmic ray observations with high-precision.
Forward measurements

- Zero degree instrumentation slot at 140m away from IP1 (ATLAS).
- p-p collision at $\sqrt{s}=14\text{TeV}$ corresponds to $E_{\text{lab}}=10^{17}\text{eV}$.
Forward measurements

Fluxes of Cosmic Rays

Interests of UHE-CR obs.

p-p collision at $\sqrt{s}=14\text{TeV}$ corresponds to $E_{\text{lab}}=10^{17}\text{eV}$.

Documentation slot at 140m away from IP1 (ATLAS).
The LHCf detector

- Sampling & imaging calorimeters either side of IP1.
- Two compact towers in both detectors.
 - Tungsten absorbers: 44r.l., 1.7λ
 - 16 plastic scintillator sampling layers
 - 4 position sensitive layers

Arm1 detector
- 20mmx20mm + 40mmx40mm
- Consists of scintillation fibers
- Located at 6, 10, 30, 42 r.l.

Arm2 detector
- 25mmx25mm + 32mmx32mm
- Consists of silicon strip detector
- Located at 6, 12, 30, 42 r.l.
Single $\gamma\pi^0$ Expected phenomena

DPMJET3 | QGSJET1 | QGSJET2 | SIBYLL

30% Energy Resolution

Spectrum in the forward region at 140m away from IP (=LHCf site).

Energy resolution is taken into account by smearing the true energy instead of detector simulation.

Neutron/Gamma ratio is also applicable to the discrimination.

All figures assume 10^7 collisions@14TeV

Vertical bar indicates stat.err

Particles/collision

Particles/(200GeV)
Operation in 2009-10

Run in 2009

- From End of October 2009 LHC restarted operation
 - 450 GeV + 450 GeV → 1.2 TeV + 1.2 TeV
- Few weeks of ‘smooth’ running allowed LHCf to collect some statistics at 450+450 GeV in the stable beam conditions.
- Extremely useful period to debug all the system
 - No particular problem came out from the run
 - Detectors are working very well and in a stable way

Run in 2010

- Successful data taking at 7TeV ongoing
 - Integrated luminosity ~ 14nb⁻¹ until the technical stop on May.
 - 35M showers and 330K π⁰s obtained (arm1+arm2).
 - Energy scale calibration with a π⁰ peak.
- Statistics improved at 900 GeV >10times larger than 2009.
- Detector shows good performance with stable quality.
 - Good stability < ±2% level. No radiation problem until May.
Analysis@900GeV
(Run2009+2010)
Gamma and hadron showers can be discriminated by the difference of the longitudinal shower development.

Longitudinal development is parametrized with L20% and L90%.

PID performance is checked with SPS calibration data taken in 2007.
- 50-200GeV for electrons
- 150, 350 GeV for protons

~90% purity both for gamma and hadron.

PID study is still ongoing.
Spectra of 900GeV data

- QGSJET2 seems to agree with data, *but conclusion is too early.*
- Note that the detector response for hadron showers is under study with SPS 350,150GeV proton data and very conservative systematic error for energy scale +10%-4% must be taken into account.

More precise analysis is ongoing.
Analysis@7TeV
Data taking has been carried out quite stably.

<table>
<thead>
<tr>
<th></th>
<th>Gamma-like</th>
<th>Hadron-like</th>
<th>π^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm1</td>
<td>1.7E7</td>
<td>3.3E7</td>
<td>1.0E5</td>
</tr>
<tr>
<td>Arm2</td>
<td>1.8E7</td>
<td>3.5E7</td>
<td>2.3E5</td>
</tr>
</tbody>
</table>
Event display of π⁰(2-gamma)

Lateral view

Longitudinal view

π⁰ mass

Arm I
σ = 6.3MeV

π⁰ energy

Extremely high energy π⁰

Energy (GeV)

Invariant mass (MeV)

R

θ = \frac{R}{140m}
Spectra of 7TeV data

- **High statistics**
 - Only 1% of total data are used
- **Very clean sample**
 - Beam-gas BG is ~ 1%

Ongoing studies:
- Model discrimination
- \(\eta \), strange meson
- LPM effects
η search

π^0

$\eta \sim 50$ events
LHCf will go out from the TAN(LHCf site) day after tomorrow.
- Plastic scintillator degrades a few % by ~6Gy on July 15th (~200nb⁻¹).

“Post”-calibration by a SPS test beam are planned on October.

Revisit LHC at the next energy upgrade. R&D and fabrication of radiation-hard GSO scintillator are on-going for the “phase-2” of the LHCf detector.

GSO bar

GSO scintillator
Conclusions

- LHCf has started physics program quite successfully.
 - 100K showers at 900GeV (Run2009 + 2010)
 - 35M showers and 330K π^0 at 7TeV (Run2010 until May technical stop)

- Detectors work fine and stably.
 - Almost negligible beam-gas background \sim1%
 - The π^0 peak demonstrates good performance as expected.

- Detectors will leave LHC tunnel on Tuesday.

- Rapid progress in analysis.
 - 900GeV results and 7TeV results, need more precise studies
 - Finalizing SPS beam test data (energy scale, PID and hadron shower)
Supplements
Measurements of very forward particles using the highest energy accelerator have a key to constrain the uncertainties unavoidable in the high-energy cosmic ray experiments.
Detector box...
- is hanged by the manipulator.
- is movable vertically about 120mm.
- stands by during non-“stable beam” to avoid an accumulated dose.
Front Counter

Front counter...
- consists of 4 scintillation counters, 2 for X and 2 for Y.
- has large aperture (80mm x 80mm).
- can work prior to the stable beam declaration.
- acts as the luminosity monitor and beam-gas BG monitor.

Movable depending on the beam status

Neutral particles

Beam pipe

TAN

Lumi-scan

Gaussian fit

Arm1

Arm2

Coincidence

LHCf Experiment page

Front Counter Count Rate

OP Vistars
Detector Stabilities

Calorimeter

Pedestal fluctuation

ADC counts

- 450GeV collision
- (+/-2%)

Light yield by N² laser

ADC counts

- 450GeV collision
- (+/-2%)

Pedestal (Scifi)

- 10 counts

Pedestal (Silicon)

- 10 counts

450GeV collision
Analysis of 900GeV run

 - \(\sim 5 \times 10^5 \) collisions at IP1.
 - 2,800 and 3,700 showers in Arm1 and Arm2.
- Absolute energy calibration by \(\pi^0 \) taken at 7TeV run.

Expected spectra with \(10^7 \) collisions.

Large model dependence can be seen even in 900GeV.
Detector stability

Gain calibration with N^2 laser for scintillator layers

Stable within 2% for all period

π^0 mass time variation

$\pm 2\%$
Particle Hit-maps

Particles originated in the p-p collision should be enclosed inside the pipe projection.

Gamma-like, $E_{\text{rec}} = 1$ TeV

Longitudinal shower development

X-view of silicon strip

Y-view of silicon strip
Air shower development
QGSJET2, Arm1-Normal

Generation Distribution of QGSJET2

Geometrical Efficiency for η

Expected measurement distribution

η

Generation Distribution of π^0 QGSJET2

Geometrical Efficiency for π^0

Expected measurement distribution

π^0
Summary of Expected number of events

<table>
<thead>
<tr>
<th></th>
<th>QGSJET2</th>
<th>SIBYLL</th>
<th>Pythia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η</td>
<td>π^0</td>
<td>η/π^0</td>
</tr>
<tr>
<td>Arm1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Normal)</td>
<td>0.08</td>
<td>46.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Arm1</td>
<td>7.35</td>
<td>238.4</td>
<td>0.031</td>
</tr>
<tr>
<td>(-20mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm2</td>
<td>1.6</td>
<td>123.7</td>
<td>0.012</td>
</tr>
<tr>
<td>(Normal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm2</td>
<td>3.36</td>
<td>191.3</td>
<td>0.018</td>
</tr>
<tr>
<td>(-10mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acceptance gain due to Crossing Angle

No crossing angle

100 μrad crossing angle

A very significant gain in acceptance is clearly visible!