Rare Top Quark Decays at the LHC

J. Ferrando

University of Oxford

Blois 2010

on behalf of:

ATLAS EXPERIMENT
Outline

1. Introduction
2. Rare decays via charged currents
3. Rare decays via flavour changing neutral currents
4. Summary
Top production @ the LHC

- SM cross section of $O(200 \text{ pb})$ @ 7 TeV for $t\bar{t}$ production at the LHC
- 10s of thousands of tops in 100 pb$^{-1}$

An ideal location to study the decays of top quarks!

Graph Produced by Akira Shibata and Ulrich Husemann
In the SM the top decays $t \rightarrow bW$ with branching fraction ~ 1

From the 2009 Review of Particle Physics:

$$V_{\text{CKM}} = \begin{pmatrix}
0.97419 \pm 0.00022 & 0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\
0.2256 \pm 0.0010 & 0.97334 \pm 0.00023 & 0.0415^{+0.0010}_{-0.0011} \\
0.00874^{+0.00026}_{-0.00037} & 0.0407 \pm 0.0010 & 0.999133^{+0.000044}_{-0.000043}
\end{pmatrix}$$

(Assumes unitarity, 3 quark generations)

- Very few $t \rightarrow Ws, \ t \rightarrow Wd$
- No $t \rightarrow Zq, \ t \rightarrow \gamma q$ (at LO, higher orders GIM suppressed)
It is very challenging to measure $BR(t \to Wd)$ or $BR(t \to Ws)$ directly. In early data, more straightforward to measure:

$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)}$$

giving sensitivity to the Wd,s channels and a constraint on $|V_{tb}|$:

$$R \approx \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = |V_{tb}|^2 \quad \text{for 3 q generations}$$

CDF1 and D02: $R > 0.61$ and $R > 0.79$ respectively (95\% C.L.).

1Phys.Rev.Lett.95:102002 (2005) \rightarrow $|V_{tb}| > 0.78$

2Phys.Rev.Lett.100:192003 (2008) \rightarrow $|V_{tb}| > 0.89$
CMS have performed feasibility studies for the measurement of R at $\sqrt{s} = 10$ TeV with:

- **dileptonic $t\bar{t}$ ($e\mu$), 250 pb^{-1}**: CMS PAS TOP-09-001
- **semi-leptonic $t\bar{t}$, 1 fb^{-1}**: CMS PAS TOP-09-007

Both approaches use the number of b-tagged jets. Probability of having a number k of b-tagged jets, P_k can be written:

$$P_k(R, \epsilon_b, \epsilon_q) = R^2 P_k(bb) + 2R(1 - R)P_k(bq') + (1 - R)^2P_k(q'q')$$

for dileptonic events, or:

$$P_k(R, B, M) = R^2 P_k(bWbW) + 2R(1 - R)P_k(bWq'W) + (1 - R)^2P_k(q'Wq'W)$$

for semileptonic events. $q' = d$ or s; M or ϵ_q is the mistagging rate. B or ϵ_b is the b-tagging efficiency. Depends also on α_k - prob. of correctly assigning k-jets.
Selection

<table>
<thead>
<tr>
<th>Selection</th>
<th>Total</th>
<th>(\bar{t}t) dileptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggered</td>
<td>((426 \pm 1) \cdot 10^6)</td>
<td>6251 (\pm 25)</td>
</tr>
<tr>
<td>(\geq 2) leptons (>20 GeV/c)</td>
<td>((204.7 \pm 0.5) \cdot 10^3)</td>
<td>2595 (\pm 16)</td>
</tr>
<tr>
<td>1 e and 1 (\mu)</td>
<td>2531 (\pm 32)</td>
<td>1344 (\pm 12)</td>
</tr>
<tr>
<td>(\geq 2) jets (>30 GeV)</td>
<td>1041 (\pm 12)</td>
<td>914 (\pm 10)</td>
</tr>
<tr>
<td>(E_T \geq 30) GeV</td>
<td>884 (\pm 10)</td>
<td>789 (\pm 9)</td>
</tr>
<tr>
<td>Opp. sign leptons</td>
<td>867 (\pm 10)</td>
<td>787 (\pm 9)</td>
</tr>
</tbody>
</table>

Diagram above shows \(P_k(R)\), given correct jet assignment probability \(\alpha = 0.82\) and \(\epsilon_b = 0.81, \epsilon_q = 0.1\)
Several ways to fit R (or ϵ_b) from the b-tag multiplicity:

- Fit R or ϵ_b - consistency check
- Choose one bin - check model consistency, select region dominated by particular systematics
- use all selected events inclusively
- Estimate α_2 from data and leave α_0 as a free parameter ($\alpha_1 = 1 - \alpha_2 - \alpha_0$): simultaneously fit R (or ϵ_b) and the background contribution
Estimating α

- α can be estimated using kinematic end point of m_{ij}
- To first order, $\alpha_{0,1,2}$ can be parametrised as binomial combinations of α, e.g. $\alpha_2 = \alpha^2$
Can get a good estimate of α:

<table>
<thead>
<tr>
<th>Method</th>
<th>$\frac{N_{mis}^{M>190}}{N_{mis}}$</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ events from MADGRAPH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>0.21 ± 0.01</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>MC truth</td>
<td>0.20 ± 0.01</td>
<td>0.80 ± 0.01</td>
</tr>
<tr>
<td>$t\bar{t}$ events from PYTHIA + TAUOLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>0.21 ± 0.01</td>
<td>0.81 ± 0.04</td>
</tr>
<tr>
<td>MC truth</td>
<td>0.23 ± 0.02</td>
<td>0.80 ± 0.01</td>
</tr>
</tbody>
</table>

Correspondingly get good estimates of α_k

<table>
<thead>
<tr>
<th>probability</th>
<th>MadGraph</th>
<th>Pythia + Tauola</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MC truth</td>
<td>Simulated Data</td>
</tr>
<tr>
<td>α_2</td>
<td>0.63 ± 0.02</td>
<td>0.67 ± 0.07 (stat) ±0.03 (syst)</td>
</tr>
<tr>
<td>α_1</td>
<td>0.31 ± 0.02</td>
<td>0.30 ± 0.05 (stat) ±0.02 (syst)</td>
</tr>
<tr>
<td>α_0</td>
<td>0.06 ± 0.01</td>
<td>0.03 ± 0.01 (stat) ±0.01 (syst)</td>
</tr>
</tbody>
</table>
Results

- Fit R with measured α and with ϵ_b as input
- Measurement limited by Systematic uncertainty $\sim 9\%$
- Dominated by b-tagging efficiency uncertainty
- This precision is comparable to current Tevatron measurements
Semi-leptonic measurement

Selection

- **Trigger (single lepton)**
- A single isolated high energy isolated lepton $p_T > 30$ GeV
- At least four selected jets $p_T > 40$ GeV, $|\eta| < 2.4$
- Centrality > 0.35
- $|m_{ij} - m_W| < \sigma(m_W)$
- $\chi^2_{\text{min}} < 4$

\[
\chi^2 = \left(\frac{m_{ijk} - m_t}{\sigma(m_{t,\text{Had}})} \right)^2 + \left(\frac{m_{l\nu p} - m_t}{\sigma(m_{t,\text{Lep}})} \right)^2
\]

Centrality $= \frac{\sum E_T}{\sqrt{(\sum E)^2 - (\sum P_Z)^2}}$

- More background ($\sim 20\%$) than dilepton ($< 10\%$)
- Requires background to be subtracted via a data-driven method
Define two different χ^2:

- χ^2_{normal}: as defined on the previous slide
- χ^2_{random}:
 - Replace highest E_T jet with new jet (same E_T) and random η and ϕ
 - calculate χ^2 as before
 - distribution is similar to χ^2_{normal} for background but different for signal
Background Subtraction

- Produce samples with $\chi^2 < 4$ cuts on both normal and random χ^2
- Note that the shapes of the signal and background remain similar
- Subtract the “random” distribution from the “normal” distribution
- Subtract the “random” distribution from the “normal” distribution.
- Background becomes consistent with 0.
- Subtracted probability distribution is consistent with the original signal distribution.
- R is extracted similarly to the dilepton measurement.
- Procedure is more complex because now there are four jets.
- Typical uncertainty size 0.12 (stat) and 0.11 (sys).
Flavour-changing neutral current (FCNC) branching ratios in different scenarios:\(^3\):

<table>
<thead>
<tr>
<th>Decay</th>
<th>SM</th>
<th>Quark Singlet(^4)</th>
<th>MSSM</th>
<th>(\mathcal{R}) SUSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \rightarrow q\gamma)</td>
<td>(\sim 10^{-14})</td>
<td>(\sim 10^{-9})</td>
<td>(\sim 10^{-6})</td>
<td>(\sim 10^{-6})</td>
</tr>
<tr>
<td>(t \rightarrow qZ)</td>
<td>(\sim 10^{-14})</td>
<td>(\sim 10^{-4})</td>
<td>(\sim 10^{-6})</td>
<td>(\sim 10^{-5})</td>
</tr>
<tr>
<td>(t \rightarrow qg)</td>
<td>(\sim 10^{-12})</td>
<td>(\sim 10^{-7})</td>
<td>(\sim 10^{-5})</td>
<td>(\sim 10^{-4})</td>
</tr>
</tbody>
</table>

\(^4\) \(Q = \frac{2}{3}, M_q \geq 300\) GeV
Experimental Limits

<table>
<thead>
<tr>
<th>BR</th>
<th>LEP</th>
<th>HERA</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow q\gamma$</td>
<td>2.4%</td>
<td>0.64% $(tu\gamma)$</td>
<td>3.2%</td>
</tr>
<tr>
<td>$t \rightarrow qZ$</td>
<td>7.8%</td>
<td>49% (tuZ)</td>
<td>3.7%</td>
</tr>
<tr>
<td>$t \rightarrow qg$</td>
<td>17%</td>
<td>13%</td>
<td>$2.0 \times 10^{-4}(tug)$, $3.9 \times 10^{-3}(tcg)$</td>
</tr>
</tbody>
</table>

- LEP limits on $tq\gamma, tqZ$ from single top production searches\(^5\)
- All HERA limits from searches for single top production \(^6\)
- Tevatron limits on $tq\gamma, tqZ$ from FCNC decays \(^7\)
- Tevatron limits on tgq from single top production \(^8\)

\(^7\)Phys. Rev. Lett. 80 (1998) 2525
\(^8\)arXiv:1006.3575
$t\bar{t} \rightarrow Wbqg$

Signature:

- 3 jets: $(p_T > 40, 20, 20$ GeV$)$
- 1 lepton: $(p_T > 25$ GeV$)$
- Miss. transv. momentum: $(\not p_T > 20$ GeV$)$
- No isolated photon: $(p_T > 15$ GeV$)$

No b-tag, get p_T^ν, assign g, q, b by minimising:

$$\chi^2 = \frac{(m_t - m_{qg})^2}{\sigma^2_{m_t}} + \frac{(m_t - m_{bl\nu})^2}{\sigma^2_{m_t}} + \frac{(m_W - m_{l\nu})^2}{\sigma^2_{m_W}}$$

Extra Selection:

- Visible energy: $E_{vis} > 300$ GeV
- $q - g$ mass: $125 < m_{qg} < 200$ GeV
- gluon-jet p_T: $P_T^g > 75$ GeV

Signal Eff.: 2.9%

Main bkg: $t\bar{t}$, W+jets
$t\bar{t} \rightarrow Wbq\gamma$

Signature:

- 2 jets: ($p_T > 20$ GeV)
- 1 lepton: ($p_T > 25$ GeV)
- Miss. transv. momentum: ($\not{p}_T > 20$ GeV)
- 1 isolated photon: ($p_T > 25$ GeV)

No b-tag, get p_T^γ, assign q, b by minimising:

$$\chi^2 = \frac{(m_t - m_{q\gamma})^2}{\sigma_t^2} + \frac{(m_t - m_{bl\nu})^2}{\sigma_t^2} + \frac{(m_W - m_{l\nu})^2}{\sigma_{mW}^2}$$

Extra Selection:

- photon p_T: $P_T^\gamma > 75$ GeV

Signal Eff.: 7.6%

Main bkg: $t\bar{t}$, $W/Z+\text{jets}$
Signal Eff.: 7.6%
Main bkg: $t\bar{t}$, Z+jets

Signature:
- 2 jets: ($p_T > 30, 20 \text{ GeV}$)
- 3 lepton: ($p_T > 25, 15, 15 \text{ GeV}$)
- Miss. transv. momentum: ($\not p_T > 20 \text{ GeV}$)
- No isolated photon: ($p_T > 15 \text{ GeV}$)

no b-tag, get P^ν_z; assign opposite sign, same flavour leptons to Z, W by minimising:

$$
\chi^2 = \frac{(m_t - m_{l_1l_2q})^2}{\sigma_t^2} + \frac{(m_t - m_{blc\nu})^2}{\sigma_t^2} + \frac{(m_W - m_{l_c\nu})^2}{\sigma^2_W} + \frac{(m_Z - m_{l_1l_2})^2}{\sigma_Z^2}
$$
Build likelihood variables:

\[L_S = \prod_{i}^{n} P^{\text{sig}}_i \text{ and } L_B = \prod_{i}^{n} P^{\text{bkg}}_i \]

based on probability distribution functions (\(P \)) for:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \to qg)</td>
<td>(m_{qg}, m_{lq\nu}, m_{qb}, P_T^{b}, P_T^{q}, \alpha_{lq},)</td>
</tr>
<tr>
<td>(t \to q\gamma)</td>
<td>(m_{q\gamma}, m_{b\gamma}, p_T^{\gamma})</td>
</tr>
<tr>
<td>(t \to qZ)</td>
<td>(m_{qZ}, m_{ll}^{\text{min}}, p_T^{\gamma}, m_{bZ}, m_{bq}, P_T^{q}, P_T^{l3})</td>
</tr>
</tbody>
</table>

Use the likelihood ratio:

\[L_R = \log_{10} \left(\frac{L_S}{L_B} \right) \]

as a discriminant.
Discriminant distributions

Introduction

$t \rightarrow Wq$

FCNC

Conclusion

$t \rightarrow qg$

$t \rightarrow q\gamma$

$t \rightarrow qZ$

Results

Discriminant distributions

- Signal ATLFAST
- Signal FullSim
- Background ATLFAST
- Background FullSim

![Graphs showing discriminant distributions](image)
Limits

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>$-\sigma$</th>
<th>Expected</th>
<th>$+\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{t}t \to bWq\gamma$:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>4.3×10^{-4}</td>
<td>1.1×10^{-3}</td>
<td>1.9×10^{-3}</td>
</tr>
<tr>
<td>μ</td>
<td>4.5×10^{-4}</td>
<td>8.3×10^{-4}</td>
<td>1.3×10^{-3}</td>
</tr>
<tr>
<td>ℓ</td>
<td>3.8×10^{-4}</td>
<td>6.8×10^{-4}</td>
<td>1.0×10^{-3}</td>
</tr>
<tr>
<td>$\bar{t}t \to bWqZ$:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>5.5×10^{-3}</td>
<td>9.4×10^{-3}</td>
<td>1.4×10^{-2}</td>
</tr>
<tr>
<td>3μ</td>
<td>2.4×10^{-3}</td>
<td>4.2×10^{-3}</td>
<td>6.4×10^{-3}</td>
</tr>
<tr>
<td>3ℓ</td>
<td>1.9×10^{-3}</td>
<td>2.8×10^{-3}</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>$\bar{t}t \to bWqg$:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.3×10^{-2}</td>
<td>2.1×10^{-2}</td>
<td>3.0×10^{-2}</td>
</tr>
<tr>
<td>μ</td>
<td>1.0×10^{-2}</td>
<td>1.7×10^{-2}</td>
<td>2.4×10^{-2}</td>
</tr>
<tr>
<td>ℓ</td>
<td>7.2×10^{-3}</td>
<td>1.2×10^{-2}</td>
<td>1.8×10^{-2}</td>
</tr>
</tbody>
</table>

Limits obtained using the modified-frequentist likelihood method (95% C.L, in absence of any signal)

Systematic uncertainties:

- $t \to qg \sim 27\%$
- $t \to q\gamma \sim 32\%$
- $t \to qZ \sim 27\%$

mainly (m_t, ISR/FSR, pile-up, σ_{bkg}, generator effects)
Sensitivity Comparison

ATLAS 1 fb⁻¹

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR (1 fb⁻¹)</th>
<th>Expected (1 fb⁻¹)</th>
<th>+1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{t}t \rightarrow bWqγ$</td>
<td>4.3 × 10⁻⁴</td>
<td>1.1 × 10⁻³</td>
<td>1.9 × 10⁻³</td>
</tr>
<tr>
<td>$\bar{t}t \rightarrow bWqZ$</td>
<td>5.5 × 10⁻³</td>
<td>9.4 × 10⁻³</td>
<td>1.4 × 10⁻²</td>
</tr>
<tr>
<td>$\bar{t}t \rightarrow bWqg$</td>
<td>1.3 × 10⁻²</td>
<td>2.1 × 10⁻²</td>
<td>3.0 × 10⁻²</td>
</tr>
<tr>
<td>$\bar{t}t \rightarrow bWqZ$</td>
<td>1.9 × 10⁻³</td>
<td>2.8 × 10⁻³</td>
<td>4.2 × 10⁻³</td>
</tr>
</tbody>
</table>

Results

Sensitivity Comparison

CMS 5σ discovery reach Vs L

N.B. A 95% C.L. limit in absence of signal unlike CMS (5σ discovery).

<table>
<thead>
<tr>
<th>Channel</th>
<th>BR 5σ (10 fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow qγ$</td>
<td>8.4 × 10⁻⁴</td>
</tr>
<tr>
<td>$t \rightarrow qZ$</td>
<td>1.5 × 10⁻³</td>
</tr>
</tbody>
</table>

CERN-LHCC-2006-021
With 1 fb$^{-1}@\sqrt{s} = 14$ fb$^{-1}$, expected limits from ATLAS on $t \rightarrow q\gamma$ and $t \rightarrow qZ$ comfortably outstrip:

- Exisiting and prospective limits from the Tevatron
- Existing limits from single top production at LEP
- Existing and prospective limits from HERA

More details: arXiv:0901.0512
Feasibility studies show good potential at the LHC for rare top decay studies

For $R = \frac{t \to Wb}{t \to Wq}$:
- With $\mathcal{O}(250 \text{ pb}^{-1})$ (@10 TeV) competitive measurements to those at Tevatron
- From top cross section would expect something similar for $\mathcal{O}(500 \text{ pb}^{-1})$ @7 TeV

For FCNC:
- Excellent prospects for sensitivity beyond current limits
 - Far better sensitivity for 1 fb^{-1} @14 TeV
 - Would expect that sensitivity is still better for 1 fb^{-1} @7 TeV from the top cross section.
FCNC Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>$t \rightarrow q\gamma$</th>
<th>$t \rightarrow q\ell$</th>
<th>$t \rightarrow q\ell$</th>
<th>$t \rightarrow q\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>μ</td>
<td>ℓ</td>
<td>e</td>
</tr>
<tr>
<td>Jet energy calibration</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>9%</td>
<td>8%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>Top quark mass</td>
<td>7%</td>
<td>7%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Backgrounds σ</td>
<td>6%</td>
<td>10%</td>
<td>7%</td>
<td>4%</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>21%</td>
<td>18%</td>
<td>17%</td>
<td>6%</td>
</tr>
<tr>
<td>Pile-up</td>
<td>37%</td>
<td>21%</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>Generator</td>
<td>34%</td>
<td>18%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>χ^2</td>
<td>5%</td>
<td>0%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>56%</td>
<td>36%</td>
<td>32%</td>
<td>32%</td>
</tr>
</tbody>
</table>