Muon channel at RCNP: the MUSIC project

Makoto Yoshida, Osaka Univ.

NuFact09, Chicago 22 July, 2009

The MUSIC project

- MUon Science Innovative Commission
- Muon channel at RCNP, Osaka Univ.
- Science using muons
 - □ Material science
 - Muon physics
 - □ R&D on muon accelerator
- Cyclotron proton beam produce pions in graphite target
- Large pion-capture solenoid surrounding target can collect pions in large solid angle
- Long bent transport solenoid can select charge and momentum, and also reduce background
 - Provide positive and negative muons on demand by flipping correction field
- All the superconducting solenoid magnets are cooled by cyocooler for easy operation

MUSIC at RCNP

- Proton beam
 - □ 400 MeV cyclotron
 - □ 1microA DC
- Pion production target
 - □ Graphite
 - \Box 40mm dia. x 200mm len.
 - □ rad. cooling; temp. rise ~300K
- Pion capture solenoid
 - □ 3.5T superconducting solenoid
 - Cu-stabilized NbTi wire
 - \Box Coil aperture ~ 900mm dia.
 - □ 27cm-thick radiation shield insid
- Transport solenoid
 - □ 2T superconducting solenoid
 - additional dipole coils
- Phase rotator
 - PRISM-FFAG
 - Compress momentum spread

Pion Capture System

- Inject proton beam from the gap of coils into solenoid magnet
- Capture backward-emitted pions in 3.5T solenoid field

Vertical dipole field in transport solenoid

- Correct drift of helical trajectory in toroidal solenoid magnet.
- Dipole coil can reverse vertical field
 - □ can select opposite sign particles
- Dipole coil can control field strength
 - can select target momentum
- Dipole SC coil is installed together with each coil element of transport solenoid

Radiation on pion-capture system

- MARS calculation for 400MeVx1microA proton beam
- 27cm SUS shielding
- 0.6W heat deposit in cold mass
 - □ 0.4W in coil (~1ton)
 - 0.2W in coil support
- 100W in target (Graphite)
- 50W in radiation shield (SUS)
- Radiation dose ~10kGy/year
- Neutron fluence
 - □ 0.5x10¹⁸ neutrons/m²/day
 - possible degradation of RRR can be recovered by thermal cycle to room temperature
 - matches yearly maintainance of cryocooler

Ratio: X:E = 1:3.3333

Muon beam simulation

Muon momentum distribution in transport solenoid

Muon beam intensity m6run2 Entries 1224 39.27 Mean 250 By=0.04T RMS 14.75 Underflow 0 Overflow 200 Integral 1224 8x10⁸ μ⁺/sec with By=0.04T 1.2x10⁻⁴ μ⁺/p 150 surface muons of $8 \times 10^7 \,\mu^+$ /sec →8x10⁸ μ⁺/sec 100 • $2x10^8 \mu^+$ /sec with By=0 50 60 80 100 120 140 2x10⁸ μ–/sec with By=0.04T m6mu Entries 308 • $5 \times 10^7 \,\mu$ -/sec with By=0 Mean 43.41 RMS 15.61 Underflow 70E Overflow Integral 308 60 By=0.04T 50 -3.1x10⁻⁵ μ⁻/p 40⊢

30 H

20 –

10F

양

20

40

60

80

0

0

→2x10⁸ μ⁻/sec

100

120

140

Momentum selection

MUSE at J-PARC vs. MUSIC at RCNP

	MUSE	MUSIC
Location	J-PARC	RCNP
Beam power	1000kW	0.4kW
	Surface muons	Surface + Decay
Intensity	10 ⁸ /sec	10 ⁷ -10 ⁸ /sec
Time structure	Pulsed (25Hz)	Continuous
Beam polarization	High	Medium
Multiple use	Many channels	Only one channel

Summary

- Muon channel, MUSIC, is going to be constructed at RCNP, Osaka Univ.
- The first of solenoid capture scheme on proton beam
- MUSIC can provide intense positive and negative muon beam using 400MeV x 1microA proton beam.
- Pion Capture System for MUSIC with a few meter transport solenoid will be constructed at RCNP in FY2009
- Commissioning with proton beam next year