COMET Mu2e Collaboration

Memorandum of Understanding On Joint Efforts Between the COMET and Mu2e Collaborations

Date: 3/6/09 Date: 3/11/09

James P. Miller
Boston University
Co-Spokesperson for
Mu2e Collaboration

Osaka University
Contact Person for
COMET Collaboration

Date: 3/6/09

Robert H. Bernstein

Co-Spokesperson for Mu2e Collaboration

reason

- 1. Both experiments have limited financial and human resources.
- A joint effort between the Mu2e and COMET collaborations could result in improvements to both designs.
- A joint effort on common problems will speed the design process and allow the world-wide effort to optimize the use of scarce resources.

action

- The Spokespersons or their designees from the Mu2e and COMET collaborations will coordinate these efforts and the exchange of information.
- The Spokespersons or their designees from the Mu2e and COMET collaborations will establish technical sub-groups to explore mutually agreed-upon issues through meetings on a regular basis.
- The Spokespersons or their designees from the Mu2e and COMET collaborations will establish and carry out joint R&D efforts on technical issues of common interest, subject to availability of funding.

Detector Solenoid

Field 1~2 T

Production Solenoid

COMET

Requirement

- High Field (~5T)
 - More pion to capture
 - More (better) conductor
 - Larger stored energy
- High Radiation
 - High Power Beam
 - Heat Load
 - Radiation Damage

Detector Solenoids

Mostly Common Feature

- •Aluminum stabilized cable
 - quench stability
 - quench protection
 - •Transparency
 - •Less heat deposition
- •Indirect cooling with cooling pipe
 - •2 phase forced flow
 - •Thermo siphon
 - •Less helium irradiated
- Technology well established
 - •Many solenoids are in use
 - •Familiar to people in high energy physics
- •Good for field up to \sim 5T
 - •4T already achieved
- •Good Solution for near future plan
 - •With modest budget

Mu2e production magnet

- Current Design
 - Copper stabilizer Helium bath cooling
- Try to adapt detector solenoid technology as an case study
 - Aluminum stabilized conductor
 - Indirect cooling with Helium piping

R&D with USJ Funding

- Approved for JFY 2009
 - Make small R&D coil to establish coil winding technology with Al stabilized conductor at FNAL
 - Use existing conductor = RIKEN SRC conductor

Test Coil

 Aluminum Stabilized Conductor Coil with Rutherford Cable Coils for back up field

R&D with KEK internal Funding

- Develop New
 Aluminum stabilized
 conductor
 - Modified RIKEN SRCConductor
 - Aim for higher yield strength
 - Aluminum Stabilizer
 - Ni or Cu+Mg

- Dimension 15mm*5mm
 - Including Insulation
 - 15*4.7 w/o ins.
- 14 strands (1.15mm dia)
- Al/Cu/SC ~ 7.3/0.9/1

a) Al-0.1wt%Ni Alloy

b) Al-0.5wt%Ni Alloy

Yield Strength VS RRR

Good RRR: for quench stability and protection

High Yield Strength: for high EM force

Issues & Discussions Radiation Damage

- Aluminum Stabilizer
 - Conductance degradation
 - Starts with 10²⁰ n/m²
 - Recoverable by thermal cycle to room temp.
- Insulator
 - $-10MGy or 10^{22} n/m^2$
- Superconductor
 - Tc or Jc degradation starts 10²² n/m²

Normal Conductor Degradation

• MIITs:
$$\int_{t_{quench}}^{t_{end}} I^2 dt = \int_{T_0}^{T_{\text{max}}} \frac{C_p A}{\rho / A} dT$$

• ρ increase \rightarrow temperature increase

For COMET

- Current Neutron Flux is marginal
 - 10²² n/m² for ~300 days operation (Machine Life)
 - Experiment requires ~200 days
 - -10^{21} n/m² for 30 days operation (Thermal Cycle Limit)
 - Degradation starts 10^{20} n/m² : 3 days !
- Need to increase coil aperture
 - Increase shield thickness
 - Stored energy increase : quench protection
 - Hoop stress increase: conductor yield strength

Design Comparison

Production Magnet

- Detector Solenoid Technology
 - Aluminum Stabilized Conductor
 - Indirect Cooling
- Radiation Damage
 - Conductor degradation by neutron flux
 - Insulator degradation by radiation

Transport Magnet

- Mu2e
 - Large aperture S shape
- COMET
 - Small aperture C shape with dipole field corrector

Issues and Discussion

- Dipole Correctors
 - Optics needed to be optimized
- Quench Protection
 - Solenoids are segmented
 - Quench Propagation maybe impeded
 - Quench back system needed

Detector Solenoid

- Field 1~2 T (except COMET target solenoid)
- Possibility to use MgB₂ for better stability?

Future R&D

- Built indirect cooling coil with new conductor
 - Check cooling parameters
- Starts R&D for radiation damage
 - Insulator R&D is on going at KEK (cyanate ester)
 - Need to starts conductor R&D such as
 - Stabilizer conductance degradation
 - Tc or Jc degradation on SC material
 - Bench mark of simulation codes
 - Mars, Phits, etc
- Possibility of New Superconductor
 - Nb₃Sn, Nb₃Al, MgB₂, etc