NuFact09 @Chicago July 20-25, 2009

R&D on Proton Extinction Monitor for COMET Project

N. Nakadozono Osaka University, JAPAN on behalf of the COMET Collaboration

Contents

- Motivation
- Proton Extinction Monitor
- Gas Selection
- Gating PMT
- Summary

Pulsed Proton Beam

Muon Decay in Flight $\mu^- \rightarrow e^- + \nu_{\mu} + \bar{\nu_e}$ Pion Decay in Flight $\pi^- \rightarrow e^- + \bar{\nu_e}$

- Signals of µ-e conversion will be detected in the region 880nsec after the proton beam pulse
- Most of major BGs are related to primary protons
- In order to avoid BGs effectively, we make use of a pulsed proton beam

- 10⁸ protons/pulse
- 8-GeV
- ~1MHz

• In order to achieve 10⁻¹⁶ of B.R.,

$$R_{Ext} = \frac{\# \text{ of p b/w pulses}}{\# \text{ of p in a pulse}} < 10^{-9}$$

Measurement of the Proton Extinction : Proton Extinction Monitor

Location of Proton Extinction Monitor

Proton Extinction Monitor will be set on a proton beam line in J-PARC

Concepts of Proton Extinction Monitor

Direct measurement of the protons in-between pulses, pulse-by-pulse base to reject the "bad" pulse

- **Radiation hardness** ---- 10¹⁰Gy/2yrs
- Fast response

--- enable to see in B.G. by Main pulse

Good S/N

--- low delayed component of scintillation lights

Gas Selection

Gas Candidates

- We have to distinguish Cherenkov lights by leaked protons from scintillation lights by main pulse
 -> Small gas scintillation yield
- Gas can be pressured in order to make it sensitive to 5-GeV/c protons
 -> Refractive index > 1.02

	N_2O	CO ₂	C_2H_2	C_2H_4	C_2H_6	SF ₆
molecular mass	44	44	26	28	30	146
refractive index	1.024	1.038	1.048	1.060	1.046	1.018
pressure(atm)	50	50	43.3	50	38.5	16.6

Measurements of Gas Scintillation

Gating PMT

Gating PMT

Cherenkov lights from Main pulse is too strong (10⁹ photons/100nsec)

Anode current of PMT is 10A when the PMT gain is 10⁶ In order to protect PMT,

We switch the PMT gain rapidly synchronizing with main pulses

Gating PMT

- In normal divided voltage, the voltage of dynodes go down as dynodes go
 p.e. are multiplied
- If raise the voltage of a dynode than that of former one
- the p.e. will be cut, and PMT gain will be down
- This technique is called Gating PMT

Requirements

- <u>1MHz repetition</u>
- <u>Cutoff ratio (gain@off/gain@on) < 10⁻⁶</u>
 Anode current : 10A->10µA
- <u>Photocathode coverage ~100%</u> to maximize Cherenkov detection efficiency
- <u>Switching speed < 100nsec</u>

Comparison

H10304-01

	Repetition(Hz)	Cutoff ratio	Photosensitive Area (mm)
Creasey, Rev.Sci.Instrum, 69(1998)p4068	10k	< 10 ⁻⁵	2.5x2.5
H10304 (Hamamatsu K.K.)	10k	10-7	8 dia.
Requirements to Extinction Monitor	1M	< 10-6	52 dia.

Prototype

We made 10kHz switching prototype and tested

- We raised the voltage of Focus and 3rd dynode by 400V and 300V respectively (when applied H.V. is 1700V)
- PMT is 9954B made in Electron Tubes which is linear focus type and has 12 dynodes and 2" photocathode
- The switching divider circuit is designed by T.
 Taniguchi (KEK)

Setup

HV: 1700V Repetition:10kHz Gate width: 1μS

Switching noise is visible but within 100ns, there is no problem 18

On/Off switching

HV: 1700V Repetition:10kHz Gate width: 1μS ~10³ photons

On/Off switching

HV: 1700V Repetition:10kHz Gate width: 1μS ~10³ photons

On/Off switching

HV: 1700V Repetition:10kHz Gate width: 1μS ~10³ photons

Gating PMT work well !

Cutoff ratio

By changing the timing of light, we measured the cutoff ratio

- <u>Cutoff ratio achieved 10⁻⁶</u>
- Raise time of ~200nsec is still fast enough

Problem : Afterpulse

- There are a number of afterpulses(~10⁵ p.e.) after turning on
- In order to identify Cherenkov lights, these afterpulses should be less than 2 p.e.
- We think these afterpulses is caused by + ions produced in-between Cathode and Focus because transverse time of + ions (a few μ sec) is consistent with calc.
- We must reduce this ionization feedback

Problem : Afterpulse

- We have some ideas to improve aftepulse
 - Ionization energy of gas in tubes is about 10V, so by <u>changing the</u> <u>voltage b/w Cathode and Focus less than 10V</u>, + ions will not produced. The thesis (Hagen, Guy M. et al, Rev.Sci.Instrum, 76(2005)pp.083117) reports they could reduce afterpulses by this technique.
 - In order to wipe p.e. staying space, also change the voltage of Dy1
 - Inject light at a angle with Cathode's surface in order not to produce p.e. from dynodes

Summary

- COMET is experiment to search µ-e conversion
- Proton Extinction is very important and monitoring device is developing
- Proton Extinction Monitor consists of Gas Cherenkov counter and Gating PMT
- Ethane gas is promising for Cherenkov gas
- Gating PMT is developing and prototype was tested
- 10kHz switching and cutoff ratio of 10⁻⁶ was achieved
- We have to improve afterpulse
- Go to 1MHz switching

