The Mu2e Muon Beamline

Rick Coleman Fermilab NuFact09/Muon Physics 20-25 July 2009

LETTERS TO THE EDITOR

On the search for the $\mu \rightarrow e$ conversion process in a nucleus

R. M. Dzhilkibaev and V. M. Lobashev

Institute of Nuclear Research, USSR Academy of Sciences (Submitted 21 June 1988) Yad. Fiz. 49, 622-624 (February 1989)

$\mu/p \sim 10^{-4}$ vs conventional $\sim 10^{-8}$ 4 5 m л 2 3

MECO

more information at http://mu2e.fnal.gov

Muon Beamline Requirements

- Deliver high flux μ^- beam to stopping target
 - high proton flux 2 x 10^{13} /sec
 - •~5 x 10¹⁰ Hz μ^- , 10¹⁸ total, 4 conversion e⁻ at $R_{\mu e} \sim 10^{\text{-16}}$

• Pulsed beam - Wait for background particles from proton beam hitting target to subside, then look for conversion e⁻

Other Mu2e talks at this workshop: Doug Glenzinski- Mu2e project, Mike Sypher's talk on Accelerator issues, Eric Prebys' talk on Proton Extinction

Muon Beamline Requirements (continued)

- •Muon properties
 - low energies
 - stop max # muons in thin target
 - backgrounds
 - small beam spot to minimize target radius
- Background particles from beamline must be minimized
- a major force driving design of the muon beamline
 - especially ~105 MeV e-
 - •Radiative pion capture in stopping target $\pi^- + (A,Z) \rightarrow (A',Z') + X + \gamma$
 - •Decays with late arriving electrons

$$\pi^- \rightarrow e^- + \overline{v_e} \ (p > 55 \text{ MeV/c}), \ \mu^- \rightarrow e^- + \overline{v_e} + v_\mu \ (p > 75 \text{ MeV/c})$$

Proton beam p =8.9 GeV Target r=3mm L= 16cm Au Inner bore, r= 25 cm through Cu/W shield Cryostat r~ 1.2m Field varies from 2.5 to 5 T

R. Coleman Fermilab NuFact09

Proton beam

MECO HEAT/RADIATION PRODUCTION SOLENOID

MECO beam power 50kW (Mu2e ~2x less)

Target 7 kW

Shield 16 kW both water-cooled

Figure 7.11: Cutaway view of the heat and radiation shield within the warm bore of the Production Solenoid. In the figure, copper is blue and tungsten is red, while the stainless steel volumes are in several colors to distinguish regions.

Superconducting Coils

Local Maximum Instantaneous Power = 21 uW/gm Maximum Total Power ~ 60 W Maximum Dose any coil ~30 MRad

Absorber thickness at target of 45 cm W/Cu

Table 7.2: Estimated steady state radiation heat loads

Volume	Power (W)
PHC1	1200
PHC3	720
PHC4	100
PHW1	2700
PHW2	1500
PHW3	6200
P3CL	2000
PCLG	300
PCIW	41
Total:	15,741

Pion Production- what energies and angles are important?

R. Coleman Fermilab NuFact09

R. Coleman Fermilab NuFact09

•Pion yield was measured by FANCY spectrometer at KEK for p Al at 3 GeV/c and p Al, p Pb at 4 GeV/c Phys. Lett B B159;1,1985

Study of Pion Production Data Used by MECO

10 GeV p + Ta -> π^- + X Thin Ta plates (1mm) in a bubble chamber D. Artmutliski et al., Sov. J. Nucl. Phys. 48, 161 (1988), Prep. JINR P1-91-191 (1991).

Transport Solenoid Inner radius=25 cm Length=13.11 m TS1: L=1 m TS2: R=2.9 m TS3: L=2 m B=2.5T TS4: R=2.9 m B=2.4T TS5: L=1 m B=2.4T Goals: -Transport low energy B=2.1T μ^{-} to the detector solenoid -Minimize transport of positive particles and high energy particles -Minimize transport of neutral particles curved section B=2.1 T-Absorb antiprotons in a thin window B=2.0 T -Minimize particles with long transit time R. Coleman Fermilab NuFact09

12

Vertical Drift Motion in a Toroid

Toroidal Field: B_s=constant x 1/r. This gives a large dB_s/dr Particle spiral drifts vertically (perpendicular to the plane of the toroid bend):

For a given pitch, D depends linearly on momentum

pitch = 1 p= 20,40,60,80,100,120 MeV

Slow-advancing particles (small pitch) get swept away dBs/ds <0 can be relaxed

Mu2e G4beamline Model

0	Solenoids and Magnetic Field
0	Proton Beam
0	Production Target
	Draduation Calanaid Chielding

- Production Solenoid Shielding
- Collimators in the Transport Solenoid
- Stopping Target
- Tracker (for show)
- Calorimeter (for show)

Mu2e Muon Beamline Simulation by Mike Martens 9/08 Thanks to Tom Roberts for much support on G4beamline

Sampling of MECO simulations

- stopped muon / proton = 0.0022 .0025
- "Mirror" is 30% of muon yield
- PS r= 20-25-30 cm \rightarrow 96-99.5-100%
- TS r=15-10 cm \rightarrow 100-56%
- Field max 5-4.5-4.0T \rightarrow 100-94-89%
- Water cooled target vs radiative <5%
- Proton beam angle 170 +/- 5 deg. \rightarrow few %
- Target radius 3-6mm \rightarrow 100-65%
- Target L 12-16-20 cm ~ same
- Insensitive to small variation in target z

Some Checks on Muon Yield

	MECO	G4beamline
Stopped muon yield per	0.0022-0.0025	0.0022
proton incident		
PS mirror removed	~0.7	0.79
PS bore radius	0.96	0.98
30 cm to 20 cm		
Proton beam angle	0.98	0.98
12 - > 5 deg		
Target radius 3 mm->	0.65	0.64
6mm		
Target L= 16 to 12 cm	0.91	0.92
Target L=16 to 20	0.99	0.96
Target z position in PS	See next plot	
PS max field	See next plot	

Target z position Study

Study of Muon Yield vs Maximum Field in Production Solenoid

MECO

Consider a Reduced Length Production Solenoid (~5m to ~3.5m)

Stopped Muon Yield with Reduced Length Production Solenoid

The number of muons **stopping in the stopping target** is given below for the standard MECO production solenoid and the shorter version for 1E6 incident protons.

	QGSP	Armul. et al/MECO	HARP fit
MECO standard PS	3122	2250	1280
MECO-shorter PS	2126	1770	970
% loss	32	21	24

Increasing Bmax from 4T to 5T in the shorter version, results in a 13% loss (HARP fit)

Benefits of Shortening Production Solenoid M. Lamm slide

- Lower Cost
- Reduced number of coils
- Reduced amount of superconductor/stabilizer
- Less stored energy
- More coil temp margin (indirect cooling possible)
- "2 coil" more like Detector Solenoid: might be easier to spec to vendors

Transport Solenoid Study Issues

- Simplify # of coil types by relaxing field specs?
 - Review gradient requirements, late particles
- Do we need corrector coils?
- How do we run positives? (rotate collimator/polarity)
- Revisit TSu/TSd interface, pbar window warm section
- Coil Fabrication Technology

Brief Summary of Fermilab Technical Division Solenoid Studies

- Debriefing and CDR update from General Atomics- contractor for MECO solenoids design
- US/Japan Agreement-Goal to develop technology for Aluminum Stabilized NbTi conductor for Production Solenoid
- Production Solenoid Studies
 - Cost/Performance/Reliability/Ease of construction/Temperature margin/Quench & mechanical analysis
 - Shorter Version with 2-coils vs MECO
- Transport Solenoid- alignment tolerance studies

Summary

- Reproduced many MECO results
- Production Solenoid studied in detail
 - HARP data important, working to incorporate
 - A reduced length PS (à la COMET) attractive
- Transport Solenoid studies starting
- Fermilab Technical Division has made much progress on magnets

Backup Slides

Production Target

Figure 7.8: Cross-sectional view of current target cooling design. In our design, the beam strikes a gold target end-on from the left. The target shell, end caps, and inlet & outlet pipes are made of titanium. The target has a slight taper at the inlet which helps reduce the operating pressure; the coolant channel then narrows to 0.3 mm.

Figure 7.9: Target and coolant temperature at fixed radii as a function of position along the length. Our chief calculation tool has been CFDesign, a heat and mass transfer program designed for solving complex engineering problems. The results shown here are for a worst-case scenario, steady state heating, with power distribution shown in Fig. 7.7 and 9500 Watts total instantaneous power. Flow rate is 1 gallon per minute.

MECO Target: Au, Constant Radius Temperature Profiles

MARS PS coil energy deposition from MARS compared to MECO/GEANT3

33

MECO target optimization

FANCY fit

- Pion yield was measured by FANCY spectrometer at KEK for p Al at 3 GeV/c and p Al, p Pb at 4 GeV/c.
- Pion kinetic energies were from 100 to 850 MeV, angles - from 36 to 90 degrees.
- Each data set has been fitted by twofireball model
 (6 parameters, with clear Adependence of each fireball)

Eur. Phys. J. C (2009) 61: 237-246 DOI 10.1140/epjc/s10052-009-1023-1

Regular Article - Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL C

GEANT4 simulation of hadronic interactions at 8–10 GeV/c: response to the HARP-CDP group

V. Uzhinsky^{1,2,6,a}, J. Apostolakis², G. Folger², V.N. Ivanchenko^{2,3}, M.V. Kossov^{2,4}, D.H. Wright⁵

Fig. 1 Two-dimensional distribution of π^+ mesons in the four-body final state generated by 8 GeV/c pp-interactions before (a) and after (b) the bug fix

Fig. 2 Comparison of the experimental data [23, 24] and the string model calculations. FIFB and QGSB are the combinations of the high energy models with the binary cascade model (see Sect. 2)

25-50-75-100 MeV momentum pion to muon at stopping target vs angle KE~2,9,19,32 MeV

Pions generated from point source- no target Includes pion decay factor and muon acceptance

Solenoid Field Specs

Т

PS

Axial field on axis: within 5% of expected value and $dB_s/ds < -0.02$ T for R<30 cm.

TS

TS1: First straight section. Field grades linearly 2.5 to 2.4T. Axial (B_s) field on axis within 0.5% of expected value. dB_s/ds<-0.02T/m for R<15 cm*.

TS2: First toroid. Ripple at outer radius <1% of B_s . Field rises from 2.4 T to 2.6 T along inner radius, then returns to 2.4 T. Field on outer radius follows a similar pattern but reduced by 1/R.

* dB_s/ds <-0.02T/m relaxed in transition regions from straight to curved sections whenever $|dB_s/dr|$ >0.275 T/m.

Figure 3.4 – Magnetic Field, B(T), along the Paths vs. Z-coordinate (m)

Figure 3.5 – Magnetic Field Derivative, dB/dZ(T/m), along the Paths vs. Z-coordinate (m). Relative magnet positions are given by zmin and zmax in Table 3.1.

MECO-doc-167-v1 2001 5T-2T PS Similar L

FIGURE 9. The momentum distribution for muons entering the detector solenoid (solid) and stopping on the target (hashed) for the thick water-cooled target, maximum magnetic field of 5-0 Tesla, π production model I, and hove radii of 20 cm (left) and 30 cm (right).

Stopping Tgt P dependence

And 0.90 for PS

4.5T to 2T

TABLE 5. Muon flux in the detector region from 10^6 primary generated π^- for water-cooled targets (target types 2 and 3) and bore radius 25 cm, using the 2 parameter fit for T_0 (π production model I).

Maximum Magnetic Field (Tesla)	Target 2 Muons Entering Detector Region	Target 2 Muons Stopping in Detector Target	Target 3 Muons Entering Detector Region	Target 3 Muons Stopping in Detector Target
$5.0~{ m T}$	4902	2181	5655	2564
$4.7~\mathrm{T}$	4673	2167	5365	2524
$4.5~\mathrm{T}$	4434	2027	4997	2423

R. Coleman Fermi

distribution for this calculation, which is very similar to that obtained using pion production model L

Time distribution of μ^- reaching stopping target

Transport Solenoid Collimator Dimensions

Collimator in the First (Highest Field) TSu Straight Section (COL1)

This consists of a cylindrical outer shell with a conical section removed. It is coaxial with Production Solenoid.

Position of Center	Inner Radius @ -z end	Inner Radius @ +z end	Outer Radius	Length	Material
(390.4, 0.0, -345.4)	15.0	17.0	24.0	100.0	Cu

Position of Center	Outer Radius	Length	Materia
(42.5, 0.0, 0.0)	24.0	80.0	Cu

Collimators in Central TSu Straight Section (COL3d)

The cross-section of this collimator is shown in Figure 3.1. The collimator is coaxial with the x-axis in the Standard MECO Coordinate System.

Position of Center	Outer Radius	Length	Material
(-42.5, 0.0, 0.0)	24.0	80.0	Cu

Figure 3.1 – Cross-sectional view of the central collimators COL3u and COL3d. Note that the outside radius of this collimator is reduced to 24 cm to accommodate a thicker inner cryostat wall relative to the design in the previous version.

Collimator in the Last (Lowest Field) TSd Straight Section (COL5)

This consists of a cylindrical shell that is coaxial with Detector Solenoid.

Position of Center	Inner Radius	Outer Radius	Length	Material
(-390.4, 0.0, 343.0)	12.8	24.0	100.0	Cu

Table 3.2: The backgrounds from various sources, calculated for the sensitivity given in the previous table, and with scaling as discussed in the text. Backgrounds identified with an asterisk are proportional to the beam extinction and the numbers in the table assume 10^{-9} extinction. The number of background events corresponds to a 2×10^7 second data collection period, yielding a sensitivity of 4 events for $R_{\mu e} = 10^{-16}$.

Source	Events	Comment
μ decay in orbit	0.225	signal/noise = 20 for $R_{\mu e} = 10^{-16}$
Pattern recognition errors	< 0.002	
Radiative μ capture	< 0.002	
Beam electrons [*]	0.036	
μ decay in flight [*]	< 0.027	without scatter in target
μ decay in flight [•]	0.036	with scatter in target
π decay in flight [*]	< 0.001	
Radiative π^- capture [*]	0.063	from protons during detection time
Radiative π^- capture	0.001	from late arriving π^-
Anti-proton induced	0.006	
Cosmic ray induced	0.016	assuming 10 ⁻⁴ CR veto inefficiency
Total background	0.41	

in Table 3.2) are proportional to the proton beam extinction and we have assumed a value of 10⁻⁹ for this parameter in calculating the backgrounds shown.