The MuCap Experiment

Steven Clayton* University of Illinois

$$\mu + p \rightarrow n + \nu_{\mu}$$

Outline:

- 1) Nucleon form factors
- 2) Mu-molecular kinetics
- 3) Experimental challenges
- 4) MuCap strategy
- 5) First physics results
- 6) Improvements since first physics results

MuCap Collaboration

V.A. Andreev, T.I. Banks, B. Besymjannykh, L. Bonnet, R.M. Carey, T.A. Case, D. Chitwood, S.M. Clayton, K.M. Crowe, P. Debevec, J. Deutsch, P.U. Dick, A. Dijksman, J. Egger, D. Fahrni, O. Fedorchenko, A.A. Fetisov, S.J. Freedman, V.A. Ganzha, T. Gorringe, J. Govaerts, F.E. Gray, F.J. Hartmann, D.W. Hertzog, M. Hildebrandt, A. Hofer, V.I. Jatsoura, P. Kammel, B. Kiburg, S. Knaak, P. Kravtsov, A.G. Krivshich, B. Lauss, M. Levchenko, E.M. Maev, O.E. Maev, R. McNabb, L. Meier, D. Michotte, F. Mulhauser, C.J.G. Onderwater, C.S. Özben, C. Petitjean, G.E. Petrov, R. Prieels, S. Sadetsky, G.N. Schapkin, R. Schmidt, G.G. Semenchuk, M. Soroka, V. Tichenko, V. Trofimov, A. Vasilyev, A.A. Vorobyov, M. Vznuzdaev, D. Webber, P. Winter, P. Zolnierzcuk

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign (UIUC), USA Université Catholique de Louvain, Belgium TU München, Garching, Germany University of Kentucky, Lexington, USA Boston University, USA

 $\mathcal{M} = \frac{G_F}{\sqrt{2}} V_{ud} \langle \nu_{\mu} | \gamma^{\alpha} (1 - \gamma_5) | \mu \rangle \, \left\langle d | \gamma^{\alpha} (1 - \gamma_5) | u \right\rangle$

Pseudoscalar Form Factor g_p

 $g_{\pi NN}$

:π

 F_{π}

p

、n

g_P determined by chiral symmetry of QCD:

$$g_{p}(q^{2}) = \frac{2m_{\mu}g_{\pi NN}(q^{2})F_{\pi}}{m_{\pi}^{2} - q^{2}} - \frac{1}{3}g_{a}(0)m_{\mu}m_{N}r_{A}^{2} \qquad \mu^{-1}$$

$$g_{P}= (8.74 \pm 0.23) - (0.48 \pm 0.02) = 8.26 \pm 0.23$$
PCAC pole term Adler, Dothan, Wolfenstein
ChPT leading order one loop two-loop <1%
N. Kaiser Phys. Rev. C67 (2003) 027002

- solid QCD prediction via ChPT (2-3% level)
- basic test of QCD symmetries

Recent reviews: *T. Gorringe, H. Fearing, Rev. Mod. Physics* 76 (2004) 31 *V. Bernard et al., Nucl. Part. Phys.* 28 (2002), *R*1

Sensitivity of Λ_S to Form Factors

$$\frac{\delta\Lambda_S}{\Lambda_S} = \boxed{2\frac{\delta V_{ud}}{V_{ud}} + 0.466\frac{\delta g_v}{g_v} + 0.151\frac{\delta g_m}{g_m} + 1.567\frac{\delta g_a}{g_a}}{-0.179\frac{\delta g_p}{g_p}}$$
Contributes 0.4% uncertainty to $\Lambda_{\rm S}$ (theory)

Uncertainty of extraction of g_p from Λ_S is dominated by uncertainty in $g_a.$

 $\frac{\partial \Lambda_S}{\partial g_X}\frac{g_X}{\Lambda_S}$ from Govaerts, Lucio-Martinez, Nucl. Phys. A 678 (2000) 110-146

$\mu^{\text{-}}$ Stopping in Hydrogen

μ^{-} is a heavy electron:

• Quickly forms a μp atom, transitions to ground state, transitions to singlet hyperfine state.

Bohr radius a $\approx a_0 m_e/m_\mu \approx a_0/200$

- Most of the time, the μ decays: $\mu^- \rightarrow \nu_{\mu} + e^- + \nu_e$ rate $\lambda_0 \approx 1/\tau_{\mu+}$ BR \approx 0.999
- Occasionally, it nuclear captures on the proton:

 $\begin{array}{ll} \mu^{-} + p \rightarrow \nu_{\mu} + n & rate \Lambda_{S} \\ \mu^{-} + p \rightarrow \nu_{\mu} + n + \gamma & BR~10^{-3} \\ \end{array}$

Complications: molecular formation/transitions, transfer to impurity atoms, ...

Muon Atomic/Molecular State in Experiment must be known to connect with theory.

Muon atomic transitions set stringent purity requirements.

 H_2 must be pure isotopically and chemically: $c_d < 1$ ppm, $c_z < 10$ ppb

μd Diffusion into Z > 1 Materials

• Ramsauer-Townsend minimum in the scattering cross section $-\,\mu d$ can diffuse ~10 cm before muon decay

Prev. expt: Ordinary muon capture in H₂

Bardin et al., Nuclear Physics A352 (1981) 365-378

Purified, liquid protium target

Typical time distribution of the events from negative muons stopped in liquid protium.

Prev. expt.: Radiative muon capture in H_2

 $\mu^- + p \rightarrow \nu_{\mu} + n + \gamma$ (BR~10⁻⁸, E>60 MeV) ≷[†]track Drift cell Scintillators le\track С В D Scintillators LH₂ target Pb Converter Phototubes B,C,D scints. Phototubes beam A.A' scints. μ.π,e Beam scints. Target A,A' scints. Liquid Protium Refrigerator B,Pb,C IWC Drift chamber D scints. Return yoke m

The RMC pair spectrometer at TRIUMF

Only one measurement of RMC: Wright et al., PRC v57 (Jan. 1998), p373.

Photon spectrum after all cuts and background subtraction, shown with theoretical fit.

Previous Data on g_p

No common region of overlap between both expts. and theory

g_P basic and experimentally least known weak nucleon form factor

Previous Data on g_p

No common region of overlap between both expts. and theory

g_P basic and experimentally least known weak nucleon form factor

Experimental Challenges

1) Unambiguous interpretation requires low-density hydrogen target to reduce μ -molecular formation.

2) H2 must be pure chemically ($c_0, c_N < 10$ ppb) and isotopically ($c_d < 1$ ppm).

3) All neutral final state of muon capture is difficult to detect (would require absolute calibration of neutron detectors, accurate subtraction of backgrounds).

Experimental Challenges

1) Unambiguous interpretation requires low-density hydrogen target to reduce μ -molecular formation.

2) H2 must be pure chemically ($c_0, c_N < 10$ ppb) and isotopically ($c_d < 1$ ppm).

3) All neutral final state of muon capture is difficult to detect (would require absolute calibration of neutron detectors, accurate subtraction of backgrounds).

Experimental Challenges

1) Unambiguous interpretation requires low-density hydrogen target to reduce μ -molecular formation.

2) H2 must be pure chemically ($c_0, c_N < 10$ ppb) and isotopically ($c_d < 1$ ppm).

3) All neutral final state of muon capture is difficult to detect (would require absolute calibration of neutron detectors, accurate subtraction of backgrounds).

μCap Experimental Strategy

- Unambiguous interpretation
 - capture mostly from F=0 μ p state at 1% LH₂ density
- Lifetime method
 - $10^{10} \mu^- \rightarrow evv$ decays - measure τ_{μ^-} to 10ppm $\rightarrow \Lambda_S = 1/\tau_{\mu^-} - 1/\tau_{\mu^+}$ to 1%

- Clean μ stop definition in active target (TPC) to avoid μ Z capture, 10 ppm level
- Ultra-pure gas system and purity monitoring to avoid: $\mu p + Z \rightarrow \mu Z + p$, ~10 ppb impurities
- Isotopically pure "protium" to avoid $\mu p + d \rightarrow \mu d + p$, ~1 ppm deuterium

— diffusion range ~cm

fulfill all requirements simultaneously unique μ Cap capabilities

3D tracking w/o material in fiducial volume

Time Projection Chamber (TPC)

10 bar ultra-pure hydrogen, 1% LH₂
2.0 kV/cm drift field
>5 kV on 3.5 mm anode half gap bakable glass/ceramic materials

3D tracking w/o material in fiducial volume

Time Projection Chamber (TPC)

U

10 bar ultra-pure hydrogen, 1% LH₂
2.0 kV/cm drift field
>5 kV on 3.5 mm anode half gap bakable glass/ceramic materials

Observed muon stopping distribution

μCap Detailed Diagram

Tracking of Muon to Stop Position in Ultrapure H₂ Gas
 Tracking of Decay Electron

Commissioning and First Physics Data in 2004

Lifetime vs. Non-Overlapping Fiducial Volume Shell

Internal corrections to λ_{μ}^{-}

Source	Correction (s^{-1})	Uncertainty (s^{-1})
$Z > 1$ impurities $(\Delta \lambda_Z)$	-17.4	4.6
Deuterium $(\Delta \lambda_d)$	-12.1	1.8
μp Diffusion $(\Delta \lambda_k)$	-3.1	0.1
Unseen $\mu + p$ scatters $(\Delta \lambda_{\rm sc})$	0.0	3.0
μ stop definition ($\Delta \lambda_{\rm tr}$)	0.0	2.0
μ pileup veto inefficiency $(\Delta \lambda_{\kappa})$	0.0	3.0
Analysis methods $(\Delta \lambda_{Ana})$	0.0	5.0
Total	-32.6	± 8.4

(statistical uncertainty of λ_{μ}^{-1} : 12 s⁻¹)

Gas impurities (Z > 1) are removed by a continuous H₂ ultra-purification system (CHUPS).

Commissioned 2004

c_{N2}, c_{O2} < 0.01 ppm

In situ detection of Z > 1 captures

In situ detection of Z > 1 captures

The final Z > 1 correction $\Delta\lambda_Z$ is based on impurity-doped calibration data.

Lifetime deviation is linear with the Z>1 capture yield.

Some adjustments were made because calibration data with the main contaminant, oxygen (H_2O), were taken in a later running period (2006).

Residual deuterium content is accounted for by a zero-extrapolation procedure.

c_d Determination: Data Analysis Approach

c_D Monitoring: External Measurement

The "Data Analysis Approach" gives a consistent result: • 2004 Production Gas, $c_D = (0.0125 \pm 0.0010) \times (122 \text{ ppm D})$ $= 1.53 \pm 0.12 \text{ ppm}$

MuCap Λ_{S} from the μ^{-} lifetime λ_{μ}^{-}				
$\lambda_{\mu}^{-} = \lambda_{0} +$	$\Lambda_{ m S} + \Delta \lambda_{p \mu p}$		·	
$\overline{)}$	molecular	formation		
$\lambda_{\mu}^{+}+$	$\Delta \lambda_{\mu p}$			
μ ⁺ decay rate	bound-state effect			
			Uncert	ainty (s^{-1})
		Value (s^{-1})	Stat.	Syst.
MuCap λ_{μ}^{-}		455849.1	12.4	8.4
Molecular Formation	(λ_{OF}) Correction	17.3		4.7
Molecular Transition	ns (λ_{OP}) Correction	5.7		3.4
Bound State Correct	tion $(\Delta \lambda_{\mu p})$	12.3		
World Average λ_{μ}^{+}		455162.2	4.4	
MuCap $\Lambda_S{}^a$		722.2	13.6	10.6

Averaged with UCB result gives

$$\Lambda_{\rm S}^{\rm MuCap} = 725.0 \pm 13.7_{\rm stat} \pm 10.7_{\rm syst} \ {\rm s}^{-1}$$

$\Lambda_{\rm s}~{\rm and}~{\rm g}_{\rm P}~{\rm Results}~{\rm 07}$

MuCap Result 07
 PRL 99, 032001 (2007)

with
$$\tau_{\mu}$$
+ from PDG and MuLan
 $\Lambda_{S}^{MuCap} = 725.0 \pm 13.7_{stat} \pm 10.7_{sys} s$

- Theory 07 Average of HBChPT calculations of Λ_s : $(687.4 \text{ s}^{-1} + 695 \text{ s}^{-1})/2 = 691.2 \text{ s}^{-1}$ Apply new rad. correction (2.8%): $(1 + 0.028)691.2 \text{ s}^{-1} = 710.6 \text{ s}^{-1}$ Czarnecki, Marciano, Sirlin , PRL 99 (2007)
 - Pseudoscalar coupling from MuCap 07

$\Lambda_{\rm s}~{\rm and}~{\rm g}_{\rm P}~{\rm Results}~{\rm 07}$

MuCap Result 07

PRL 99, 032001 (2007)

with
$$\tau_{\mu}$$
+ from PDG and MuLan

 $\Lambda_{\rm S}^{\rm MuCap}$ = 725.0 ± 13.7_{stat} ± 10.7_{sys} s⁻¹

Theory 07 Average of HBChPT c Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi SUGGV $(687.4 \text{ s}^{-1} + 695 \text{ s}^{-1})$ Constant D. B. Chitwood et al. (MuLan Collaboration) Apply new rad. correct Published 16 July 2007 032001 Abstract Full Text: [PDF (241 kB) GZipped PS Buy Article] $(1 + 0.028)691.2 ext{ s}^{\circ}$ Czarnecki, Marciano, Sirlir Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gp V. A. Andreev et al. (MuCap Collaboration) Pseudosc Published 16 July 2007 032002 Abstract Full Text: [PDF (270 kB) GZipped PS Buy Article] Electroweak Radiative Corrections to Muon Capture Andrzej Czarnecki, William J. Marciano, and Alberto Sirlin Published 16 July 2007 032003 Abstract Full Text: [PDF (101 kB) GZipped PS Buy Article]

• MuCap 2007 result (with g_P to 15%) is consistent with theory.

 \bullet This is the first precise, unambiguous experimental determination of g_{P}

Several upgrades should lead to a 3-fold improved precision in 2006-2007 runs

Source	2007 Uncertainty (s ⁻¹)	Projected Final Uncertainty (s ⁻¹)
Statistical	13.7	3.7
Z > 1 impurities	5.0	2
μd diffusion	1.6	0.5
μp diffusion	0.5	0.5
μ + p scattering	3	1
μ pileup veto eff.	3	1
Analysis Methods	5	2
Muon kinetics	5.8	2
Systematic	10.7	3.8
Total	17.4	5.3

Muon-On-Demand

- Single muon requirement (to prevent systematics from pile-up)
- limits accepted μ rate to ~ 7 kHz,
- while PSI beam can provide ~ 70 kHz

Several upgrades should lead to a 3-fold improved precision in 2006-2007 runs

Source	2007 Uncertainty (s ⁻¹)	Projected Final Uncertainty (s ⁻¹)
Statistical	13.7	3.7
Z > 1 impurities	5.0	2
µd diffusion	1.6	0.5
μp diffusion	0.5	0.5
μ + p scattering	3	1
μ pileup veto eff.	3	1
Analysis Methods	5	2
Muon kinetics	5.8	2
Systematic	10.7	3.8

Z>1 Impurities Reduced and Measured

Several upgrades should lead to a 3-fold improved precision in 2006-2007 runs

Source	2007 Uncertainty (s ⁻¹)	Projected Final Uncertainty (s ⁻¹)
Statistical	13.7	3.7
Z > 1 impurities	5.0	2
µd diffusion	1.6	0.5
μp diffusion	0.5	0.5
μ + p scattering	3	1
μ pileup veto eff.	3	1
Analysis Methods	5	2
Muon kinetics	5.8	2
Systematic	10.7	3.8

Record Isotopic Purity Achieved

Summary

- First g_P with non-controversial interpretation
- Agrees with χ PT expectation
- Factor 2.5 additional improvement on the way
 - kicker \rightarrow >10¹⁰ good events on tape
 - higher purity target + more impurity-doped calibration runs → smaller Z>1 correction
 - deuterium removal \rightarrow negligible deuterium correction

"Calibrating the Sun" via Muon Capture on the Deuteron

$\mu^- + \mathbf{d} \rightarrow \mathbf{n} + \mathbf{n} + \mathbf{v}$

Motivation for the MuSun Experiment:

- First precise measurement of basic Electroweak reaction in 2N system,
- Impact on fundamental astrophysics reactions (v's in SNO, pp fusion)
- Comparison to modern high-precision calculations

Extra Slides

Phenomenological Calculation

- Gives an expression in terms of form factors g_V , g_M , g_A , g_P .
- W.F.s are solutions to the Dirac equation.
- μ in bound state: $e^{-iE_{\mu}t}\psi_{\mu}(\vec{x}) = e^{-iE_{\mu}t}\phi_{\mu}(\vec{x}) \begin{pmatrix} \chi_{\mu} \\ 0 \end{pmatrix}, \quad \phi_{\mu}(\vec{x}) = \frac{1}{\sqrt{\pi a_0^3}}e^{-r/a_0}$
- Non-relativisitic expansion to order v_{nucleon}/c:
 - effective Hamiltonian in terms of "Primikoff factors" and Pauli matrices.
 - particle states in terms of 2-spinors (χ).
 - results in an explicit expression for the transition rate W:

$$W = \frac{C_p^2}{2\pi^2 a_0^3} \frac{E_\nu^2}{1 + E_\nu / \sqrt{m_n^2 + E_\nu^2}} G_V^2 (1 + 3\eta) \left(1 - \frac{\langle \vec{\sigma} \cdot \vec{\sigma}_A \rangle \xi}{1 + 3\eta}\right)$$

total µp spin dependence

$$\Lambda_{
m S}$$
 = $W_{F=0} = 690.0~{
m s}^{-1}$

$$\Lambda_{\rm T}$$
 = $W_{F=1} = 11.3~{
m s}^{-1}$

μ**ρ(**↑

triplet

 $\mu p(\uparrow\downarrow)$ singlet

Axialvector Form Factor g_A

$$g_a(-0.88m_\mu^2) = 1.247 \pm 0.004$$

Introduces 0.45% uncertainty to $\Lambda_{\rm S}$ (theory)

Axialvector Form Factor g_A

PDG 2006

Edwards et al. LHPC Coll (2006)

Bernard et al. (2002)

$$g_A(q^2) = g_A(0)\left(1 + \frac{1}{6} < r_A^2 > q^2\right)$$
$$g_A(0) = -1.2695 \pm 0.0029$$
$$g_A(-0.88m_\mu^2) = -1.245 \pm 0.003$$

introduces 0.4% uncertainty to $\Lambda_{\rm S}$ (theory)

μp Diffusion Effect

Impurity correction scales with Z > 1 capture yield.

 $\beta_z = \Delta \lambda_z / Y_z$ is similar for C, N, and O.

We can correct for impurities based on the observed Z > 1 capture yield, if we know the detection efficiency ϵ_z .

neutron (J. Nico, CIPANP 06)

$$dW \propto (g_V^2 + 3g_A^2)F(E_e)[1 + a\frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \vec{\sigma_n} \cdot (A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_\nu}}{E_\nu} + D\frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu})]$$

Jackson, Treiman, Wyld, Nucl. Phys. 4, 206 (1957)

Lifetime

$$au = rac{1}{f(1+\delta_R)} rac{K/ln2}{(1+\Delta_R^V)(g_V^2+3g_A^2)} = (885.7\pm0.8)\,\mathrm{s}$$

Electron-antineutrino asymmetry

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} = (-0.103 \pm 0.004)$$

Spin-electron asymmetry

$$A = -2\frac{|\lambda|^2 + |\lambda| cos\phi}{1 + 3|\lambda|^2} = (-0.1173 \pm 0.0013)$$

Coupling ratio

$$\lambda = \frac{|g_A|}{|g_V|} e^{i\phi} = (-1.2695 \pm 0.0029)$$

Spin-antineutrino asymmetry

$$B = 2\frac{|\lambda|^2 - |\lambda|\cos\phi}{1 + 3|\lambda|^2} = (0.983 \pm 0.004)$$

Triple correlation

$$D=2rac{|\lambda|sin\phi}{1+3|\lambda|^2}=(-4\pm 6) imes 10^{-4}$$
 PDG, 2005 update

Unpublished analysis of MuCap μ^+ data taken in 2004

Analysis of MuCap data collected in 2004

- Led to first physics result published July 2007
- Based on 1.6 10⁹ observed muon decay events
- Conditions:
 - -- Full muon tracking
 - -- Full electron tracking
 - -- CHUPS running (c_z ~ 10 ppb)
 - -- DC muon beam ~20 kHz
 - -- <u>No</u> isotopic purification column ($c_d \sim 1$ ppm)

Impact Parameter Cuts

(also known as μ -e vertex cuts)

The impact parameter b is the distance of closest approach of the e-track to the μ stop position.

Lifetime vs eSC segment

Lifetime vs. Chronological Subdivisions

