Status of MICE

NUFACT09 Illinois Institute of Technology Chicago, 21 July 2009 Paul Soler* (*on behalf of the MICE Collaboration)

Contents

- 1. MICE aims
- 2. Ionization Cooling at a Neutrino Factory
- **3.** Description of MICE
- 4. ISIS
- 5. MICE Beamline
- 6. MICE Target
- 7. MICE Components (Absorber, RF cavity, detector systems)
- 8. MICE schedule
- 9. Conclusions

Note that there are also a number of posters on MICE at the NUFACT09 poster session

P. Soler, NUFACT09, IIT Chicago, 21 July 2009

MICE aims

- The Muon Ionization Cooling Experiment (MICE) is being built at the Rutherford Appleton Laboratory (RAL) to measure ionization cooling from a beam of muons traversing liquid hydrogen and other low Z absorbers (LiH).
- □ The aim of MICE is to measure ~10% cooling of 140-240 MeV/c muons with a measurement precision of $\Delta \epsilon / \epsilon_{in} = 10^{-3}$

MICE Collaboration

International Muon Ionization Cooling Experiment (MICE): Belgium, Bulgaria, China, Holland, Italy, Japan, Switzerland, UK, USA based at Rutherford Appleton Laboratory (UK): ~150 collaborators

Neutrino Factory

Baseline design for a Neutrino Factory from International Design Study
 Design includes a Muon Ionization Cooling stage

P. Soler, NUFACT09, IIT Chicago, 21 July 2009

6

Ionization Cooling

□ Ionization cooling:

Ionization gives cooling term, multiple scattering gives a heating term

- Ionization per density is proportional to Z, multiple scattering is inversely proportional to X_0 thus prop to Z(Z+1)
- Thus, best cooling achieved with low Z: hydrogen, lithium hydride (LiH)

Definition of emittance:

Need to perform single particle experiment to measure ϵ with full correlations

Change in emittance at absorber: $\Delta \varepsilon / \varepsilon = -(\Delta p/p) (1 - \varepsilon_0 / \varepsilon)$ 5% momentum loss in each absorber \rightarrow 15% cooling for large ε beam Equilibrium emittance for H₂ $\varepsilon_0 \sim 2.5 (\pi)$ mm-radians (acceptance of accelerators in NuFact 15 – 30 (π) mm-radians)

 \rightarrow Measure $\Delta \epsilon$ to 1%, implies measurement ϵ to 0.1%

Cooling needs Neutrino Factory

Performance of cooling channel: Neutrino Factory Study 2a (USA) (acceptance 30π mm rad) Only NuFact Sudy 2a (S2a) with both signs meets goal of 10^{21} µ decays/year given 0.17 µ/p

- Trade-off cooling efficiency vs. downstream acceptance
 - Increasing from 30 to 35 π mm-rad halves required length cooling channel
 - At 45 π mm-rad, no cooling needed

MICE

- Cooling demonstration aims to:
 - design, engineer, and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
 - place this apparatus in a muon beam and measure its performance in a variety of modes of operation and beam conditions
 - show that design tools (simulation codes) agree with experiment
- □ MICE includes one cell of the FS2 cooling channel:
 - three Focus Coil modules with absorbers (LH₂ or solid)
 - two RF-Coupling Coil modules
 - (4 cavities per module)

 Plus two Spectrometer Solenoids, particle ID and timing for emittance measurement

ISIS Synchrotron

The MICE muon beamline will be extracted from the ISIS synchrotron at RAL

ISIS Synchrotron

Acceleration cycle of the ISIS protons:

IIT Chicago, 21 July 2009

MICE Beamline ISIS Accelerator MICE Target 1st Triplet Solenoid Dipole 1 Extraction region Magnet with three quads Dipole 2 Quadrupole Quadrupole Magnet Magnets Magnets 3rd Triplet 2nd Triplet

P. Soler, NUFACT09, IIT Chicago, 21 July 2009

□ All magnets in MICE beamline installed (fish-eye lens view):

- Diffuser: rotating wheel with different thicknesses of material to blow up beam for large emittance beams
 - To be ready Sept 09

- □ Decay solenoid repaired:
 - Coil 10 could not go superconducting
 - Multi-layer insulation (MLI) installed
 - Cool down to 4.5K (Apr 09)
 - Magnet powered up to 5T (Apr 09)

MICE Target

- Target and target mechanism design for 2008 run
- □ Target: titanium fin 10x10x1 mm³
- □ Target insertion mechanism:
 - Linear motor with radial magnet
 - Remote position sensing with laser quadrature readout
 - Drives commutator power to correct 24 coil currents

MICE Target

80

MICE Target

- □ Target operated successfully March-December 2008
- □ Target was accidentally "parked" in beam on 29 Nov 2008: target tip melted
- Target mechanism got jammed in December 2008

MICE Absorbers

□ Liquid hydrogen absorber with focus coil magnets:

RF cavities

- □ Four 201.25 MHz copper-niobium cavities per RFCC module
- Cavities in manufacture
- Production Readiness Review (PRR) 29 July at LBNL

Specs: $\beta = 0.87$, $Q_0 \sim 53,500$ Be window radius: 21cm; thickness 0.38 mm Peak input RF power ~ 4.6 MW per cavity Gradient: ~ 16 MV/m P. Soler, NUFACT09, IIT Chicago, 21 July 2009

- □ Cherenkov detector:
 - Two aerogels with different refractive index, read out by 4 PMTs
 - Pion-muon separation
- □ Time of Flight (TOF): PID and RF phase
 - Three TOFs: TOF0 σ_t = 51 ps, TOF1 σ_t = 62 ps
 - TOF0-TOF1: pion-muon separation
 - TOF1-TOF2: electron rejection

□ Scintillating fibre tracker:

 $\left(\right)$

- Two trackers in 4T solenoid, with 5
 SciFi tracking stations in each tracker
- Resolution: 0.4 mm spatial, 1.1 MeV/c
 p_t and 3.9 MeV/c p_z

- Calibration scintillating fibre tracker with cosmics:
 - Hit efficiencies per station: 99.38% 99.86% (only 3 dead channels)

0.373

□ Tracker event display:

- □ MICE Electron-Muon-Calorimeter:
 - Dedicated to electron-muon separation.
 - KLOE-Like (KL) lead-scintillating fibre calorimeter: 4 cm preshower grooved lead foils with scintillating fibers, (installed and tested at RAL)

Electron Muon ranger (EMR): 25 modules (150 cm) of triangular plastic extruded scintillators to measure energy and range

P. Soler, NUFACT09, IIT Chicago, 21 July 2009

MICE Commissioning

- First MICE commissioning run: Mar-Dec 08
 - Successfully ran beamline (without solenoid)
 - Observed rates in beam counters versus ISIS beam loss

Particle ID with TOF/CKOV: $\pi/\mu/e^+$

20

 $\frac{0}{25}$

26

27

28

29

30

31

32

33

34

time of flight [ns]

35

Conclusions

- Commissioning MICE beam commenced 2008!
- □ MICE target operated from Mar-Dec 2008.
- Particles observed using TOF/CKOV counters.
- New target, decay solenoid and tracker to be ready in September 2009 ==> MICE Steps I & II (emittance measurement)
- □ Steps III/III.1 & IV should occur in 2010.
- □ Step VI expected 2012.

On track for observation of ionization cooling by 2012!