Results and Status of PRISM-FFAG R&D

Akira SATO Dept.of Physics, Osaka University

11th International Workshop on Neutrino Factories, Superbeams and Beta Beams July 20-25, 2009 Illinois Institute of Technology, Chicago

Contents

- Motivation of PRISM-FFAG
- Overview of R&D results
 - Design
 - Magnet
 - RF system
 - 6-cell FFAG
 - Phase rotation test
- Prospects
 - Collaboration and Task Force
 - MUSIC
- Summary

Japanese staging plan of µ-e conversion

$B(\mu^- + Al \to e^- + Al) < 10^{-16}$

- without a muon storage ring. (MECO-type)
 with a slowly-extracted pulsed proton beam.
 at the J-PARC NP Hall.
- •for early realization (~2017)

The sensitivity is limited by backgrounds: pion induced electrons, decay in orbit electrons, and so on.

$B(\mu^{-} + Ti \to e^{-} + Ti) < 10^{-18}$

- with a muon storage ring.
- with a fast-extracted pulsed proton beam.
- •need a new beamline and experimental hall.
- •Ultimate search

A muon storage ring can solve the problem.

Phase rotation in PRISM-FFAG

- A technique of phase rotation is adopted.
- The phase rotation is to decelerate fast beam particles and accelerate slow beam particles by RF.
- To identify energy of beam particles, a time of flight (TOF) from the proton bunch is used.
 - Fast particle comes earlier and slow particle comes late.

- Proton beam pulse should be narrow (< 10 nsec).
- Phase rotation is a wellestablished technique, but we need to apply this to a low energy muons (P_µ~68MeV/c) for stopping muon experiments.

Design of PRISM-FFAG

PRISM-FFAG

- N=10
 k=4.6
 F/D(BL)=6.2
- \bigcirc r0=6.5m for 68MeV/c
- half gap = 17cm
 mag. size 110cm @ F center
- Solution Θ Radial sector DFD Triplet $\Theta \theta_{\rm F}/2=2.2 \deg$
- $\Theta \theta_{\rm D}$ =1.1deg
- Max. field
- ☑ F : 0.4T
- ☑ D : 0.065T
- 🍚 tune
- v: 1.58

Expected phase rotation with PRISM-FFAG

phase(ns)

The First PRISM-FFAG Magnet

Difference between TOSCA and measurement is about 10 Gauss

The RF system

Field gradient of PRISM-FFAG

Proton Synchrotron RF System

How to realize the 4MHz sawtooth RF

- Requirements on RF system for PRISM-FFAG
 - high field gradient : >170kV/m @4MHz
 - Sawtooth-RF
- Magnetic Alloy cores have been adopted
 - Q < 1 : enable to add higher harmonics
 - large aperture is possible
- Adjust the frequency
- solution 1 : cut core
 - used in RF cores for J-PARC MR
 - too expensive for PRISM-cores due to their ze
- solution 2 : hybrid RF system
 - tested for J-PARC RCS
 - can use for PRISM-cavities

Hybrid RF system

- Proposed by A. Schnase.
- Combination of MA cavity with a resonant circuit composed by inductor and capacitor.
- Developed for J-PARC RCS cavities.

J-PARC: add C and L to control Q and f PRISM : add L to control f

Hybrid RF system

Parallel inductor for J-PARC

Inside of PRISM AMP

It will be tested in this year.

1-cell study using alpha particles

- Before the 6-cell PRISM-FFAG study, 1-cell study to evaluate the ring performance was carried out.
- A new method using a standard alpha source was proposed. From a Taylor expanded transfer map, closed orbit, tune, acceptance were determined.
- A main person on this work is by Y. Kuriyama for his Ph.D.. A paper is under preparation now.

Experimental

FFAG08 - 1st - 5th Sep. 2008, Manchester, UK

Akira SATO 17

Alpha injector

- Alpha source : ²⁴¹Am
- Degrader
- Collimator
- Moving & rotating stages : x, x'

Table 4.4: Specifications of the alpha ray injector	
Alpha source	$^{241}Am 5.486 MeV (85.2\%)$
Energy moderator	
Material	Aramid film
Thickness	$21 \ \mu \mathrm{m}$
Energy loss	$2.950~{\rm MeV}$
Average alpha energy	$2.536 { m MeV}$
FWHM of alpha energy	$0.121 { m ~MeV}$
Collimator	
Number of collimators	2
Diameter	$5 \mathrm{~mm} \phi$
Interval	300 mm
Robots	
Stroke	800 mm along radius direction
Rotation angle	\pm 45 degrees

Detector

Position sensitive detector

- Multi anode PMT
- phoswitch (ZnS(Ag)+Plastic)
- charge ration method

Moving stages : x, L

FFAG08 - 1st - 5th Sep. 2008, Manchester, UK

Experimental apparatus

Data taking : 23 Jul. - 15 Sep. 2007 at K2 area, KEK

FFAG08 - 1st - 5th Sep. 2008, Manchester, UK

Truncated Taylor map with Symplectic Condition

 To estimate the ring performance from the data of alpha particles, a transfer map of truncated Taylor expansion was used.

$$\begin{pmatrix} X(1) \\ X'(1) \end{pmatrix} = \mathbf{M} \begin{pmatrix} X(0) \\ X'(0) \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$$

 $X(1) = R_{11}X(0) + R_{12}X'(0),$ $X'(1) = R_{21}X(0) + R_{22}X'(0).$

• Taylor expansion :

$$X_{a}(1) = \sum_{b} R_{ab}X_{b}(0) + \sum_{b,c} T_{abc}X_{b}(0)X_{c}(0) + \sum_{b,c,d} U_{abcd}X_{b}(0)X_{c}(0)X_{d}(0) + \cdots,$$

Procedure to get parameters

1) Calculation of a linear transfer map (a linear 2×2 transfer matrix)

- to get equilibrium orbit (unknown param. in fitting)
- the measured data of relatively small amplitudes were used.
- 2) with the parameters for the equilibrium orbit fixed, a linear chi-square fitting was made. The obtained parameters are used as initial values for higher-order fitting.

Chi-Square definition

To calculate the coefficients of transfer map, the chi-square must be defined. In this study, for the case that transportation particle from $[X_{in}, X'_{in}]$ to $[X_{out}, X'_{out}]$, the chi-square is defined by

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{((X_{cal})_{i} - (X_{exp})_{i})^{2}}{\sigma_{X_{i}}^{2}} + \frac{((X'_{cal})_{i} - (X'_{exp})_{i})^{2}}{\sigma_{X'_{i}}^{2}} \right), \quad (6.1)$$

where σ_{X_i} and $\sigma_{X'_i}$ are the position and angle resolutions of the measurement, respectively and $(X_{cal})_i$ and $(X'_{cal})_i$ are the calculated position and angle displacement, respectively from the equilibrium orbit, given by

$$\begin{pmatrix} (X_{cal})_i \\ (X'_{cal})_i \end{pmatrix} = \mathbf{M} \begin{pmatrix} (X_{in})_i - X_0 \\ (X'_{in})_i - X'_0 \end{pmatrix} \qquad (i = 1, 2, 3, \cdots),$$
(6.2)

where **M** is the transfer map, and X_0 and X'_0 are the equilibrium orbit. $(X_{exp})_i$ and $(X'_{exp})_i$ are the measured position and angle displacements from the equilibrium orbit, given by

$$(X_{exp})_i = (X_{out})_i - X_0 (X'_{exp})_i = (X'_{out})_i - X'_0 \qquad (i = 1, 2, 3, \cdots)$$

$$(6.3)$$

Symplectic condition

 To get a long-term stability to predict dynamic aperture for circular accelerator, the symplectic condition is required for the transfer map.

The symplectic condition is required by the conservation of Hamiltonian describing a beam. Then the transfer map should be constrained by the symplectic condition. By defining a Jacobian matrix \mathbf{J} of the transfer map M by

$$J_{ab} = \frac{\partial(X(1))_a}{\partial(X(0))_b},\tag{7.1}$$

the symplectic condition can be expressed by

$$\mathbf{J}^{\mathsf{t}}(\mathbf{X}(\mathbf{0})) \mathbf{S} \mathbf{J}(\mathbf{X}(\mathbf{0})) = \mathbf{S} \text{ for all } \mathbf{X}(\mathbf{0}),$$
(7.2)

where $\mathbf{J^t}$ denotes a transposed matrix of $\mathbf{J},$ and \mathbf{S} is a block matrix expressed by

$$\mathbf{S} = \begin{pmatrix} 0 & \mathbf{I}_n \\ -\mathbf{I}_n & 0 \end{pmatrix},\tag{7.3}$$

where \mathbf{I}_n is a *n*-dimensional unit matrix.

To satisfy the condition of Eq.(7.2), the Jacobian matrix \mathbf{J} should have a unit determinant, given by

$$det (\mathbf{J}) = 1. \tag{7.4}$$

Considering one-dimension (X, X') system, the Jacobian matrix is expressed by

$$\mathbf{J} = \begin{pmatrix} \frac{\partial X(1)}{\partial X(0)} & \frac{\partial X(1)}{\partial X'(0)} \\ \frac{\partial X'(1)}{\partial X(0)} & \frac{\partial X'(1)}{\partial X(0)} \end{pmatrix}.$$
 (7.5)

Therefore, the symplectic condition for the linear transfer map can be given by

$$R_{11}R_{22} - R_{12}R_{21} = 1. (7.6)$$

When the transfer map is symplectic, the trajectories of particles in their phase space should be closed and the phase space volume should be conserved. Then the Liouville theorem holds.

Symplectic condition for 2nd order

 $\mathbf{J}_{2} = \begin{pmatrix} R_{11} + 2T_{111}X(0) + T_{112}X'(0) & R_{12} + T_{112}X(0) + 2T_{122}X'(0) \\ R_{21} + 2T_{211}X(0) + T_{212}X'(0) & R_{22} + T_{212}X(0) + 2T_{222}X'(0) \end{pmatrix}.$ (7.7)

Therefore, the determinant of \mathbf{J}_2 is given by

 $det (\mathbf{J}_{2}) = X(0)^{0} X'(0)^{0} (-R_{12}R_{21} + R_{11}R_{22}) + X(0)^{1} X'(0)^{0} (+2R_{22}T_{111} - R_{21}T_{112} - 2R_{12}T_{211} + R_{11}T_{212}) + X(0)^{0} X'(0)^{1} (+R_{22}T_{112} - 2R_{21}T_{122} - R_{12}T_{212} + 2R_{11}T_{222}) + .$ (7.8) $X(0)^{2} X'(0)^{0} (-2T_{112}T_{211} + 2T_{111}T_{212}) + X(0)^{1} X'(0)^{1} (-4T_{122}T_{211} + 4T_{111}T_{222}) + X(0)^{0} X'(0)^{2} (-2T_{122}T_{212} + 2T_{112}T_{222})$

with the symplectic condition

 $1 = -R_{12}R_{21} + R_{11}R_{22},$ $0 = +2R_{22}T_{111} - R_{21}T_{112} - 2R_{12}T_{211} + R_{11}T_{212}, and$ $0 = +R_{22}T_{112} - 2R_{21}T_{122} - R_{12}T_{212} + 2R_{11}T_{222}.$ (7.9)

Supposing 2nd order is exact, all of the higher order terms should vanish exactly. Then, the necessary and sufficient conditions are

$$\begin{array}{l} 0 = -2T_{112}T_{211} + 2T_{111}T_{212}, \\ 0 = -4T_{122}T_{211} + 4T_{111}T_{222}, and \\ 0 = -2T_{122}T_{212} + 2T_{112}T_{222}, \end{array} \tag{7.10}$$

Table 7.1: Total numbers of the coefficients necessary for a truncated Taylor transfer map

Map Order	1	2	3	4	5
Without symplectic restriction	4	10	18	28	40
With symplectic restriction	3	7	12	18	25

Closed orbit

Momentum of alpha particles

 $P_{alpha} = 137.50^{+0.02}_{-0.02}$ MeV/c.

obtained closed orbit from the transfer map

 $\begin{array}{ll} X_0^{exp} = 6.1902 \pm 0.0001 & \mbox{m and} \\ X_0^{\prime exp} = -0.0007 \pm 0.0001 & \mbox{rad}, \end{array}$

from Zgoubi with TOSCA field map

 $X_0^{sim} = 6.1970^{+0.0002}_{-0.0001}$ m, and $X_0^{\prime sim} = 0.0000^{+0.0001}_{-0.0001}$ rad.

Acceptance

Figure 8.2: The tracking of 13 particles for 10 turns. Black asterisks indicate the positions of particles after passing 6 turns. The upper and lower figures are those of Zgoubi and the truncated Taylor transfer map with the order up to the 5th, respectively.

FFAG08 - 1st - 5th Sep. 2008, Manchester

Tune

Figure 8.3: Horizontal tune as a function of initial amplitude. Closed circles represent the betatron tunes obtained by Zgoubi, and red triangles represent those obtained by the 5th ordered truncated Taylor transfer map.

6-cell PRISM-FFAG

- FFAG-ring
 - PRISM-FFAG Magnet x 6、 RF x 1
- Beam : α -particles from radioactive isotopes
 - ²⁴¹Am 5.48MeV(200MeV/c) \rightarrow degrade to 100MeV/c
 - small emittance by collimators
 - pulsing by electrostatic kickers
- Detector : Solid state detector
 - energy
 - timing

This FFAG will be dismantled in coming Nov. and moved to a lager experimental hall in Jan. 2010 for MUSIC project. If you want see the FFAG, please visit Osaka-U. before the Nov.

6-CELLKS

in the M-exp. hall of R

第

PRIS

Osaka Universit

Closed orbit comparison b/w data and simulations

- Tracking for the 6-dell FFAG has been performed by 3 different codes using same field maps, which calculated by TOSCA. Tracking with Zugoubi will be done.
- There are discrepancies need to be understood. We need to check
 - interpolation of the field maps, step size, and so on...

Apparatus for the test of phase rotation

RF voltage

red lines show/the/gap voltage/

max. voltage for f=1.9MHz V_{pp}=66kV

RF wave used in the experiment, f=1.9MHz, V_{pp}=33kV

Result of the phase rotation test

 Modulation by the RF was observed. The observed amplitude is 80% of expected value. It would be explained by HV probe calibration of detector calibration.

Comparison b/w data and simulation

Preliminary agenda.

Location

Day 1: Room 539 Blackett Laboratory Day 2: Room 1004 Blackett Laboratory

Wednesday 1st July 2009

Registration: 10.00 to 10:30, (Coffee at 10:20)

Session 1: 10.30am Welcome and Introduction to Muon-to-Electron Conversion and COMET/PRISM Session Chair: Y. Uchida

10:30	Welcome	P. Dornan
10:35	Introduction to Physics of Muon-to-Electron Conversion and COMET/PRISM experiments	Y. Kuno
11:35	Results and Status of PRISM-FFAG R&D	A. Sato
12:35	Muon-to-Electron Conversion from the UK	Y. Uchida
essior	Perspective 1 2: 14:00 to 15:40 s PRISM 1 Chair: TBC	
essior owards ession 14:00	Perspective 2: 14:00 to 15:40 s PRISM 1 Chair: TBC Advanced FFAG for PRISM	Y. Mori

Session 3: 16:00 to 16:40 Towards PRISM 2 Session Chair: J. Pasternak

 16:00
 FFAG Lattice with Insertion
 S. Machida

 16:40
 New ideas of the muon phase rotation
 A. Sato

Session 4: 17:10 to 18:00 Discussion on Challenges in Injection/Extraction, Simulations, etc. Session Chair: J. Pasternak

19:00 Dinner,

Thursday 2nd July 2009

Session 5: 9:15 to 10:40 Hardware for FFAG 1 Session Chair: TBC

9:15	EMMA Hardware Status	N. Bliss
10:15	EMMA Commissioning	B. Muratori

10:40 Coffee

Session 6: 11:00 to 13:00 Hardware for FFAG 2 Session Chair: TBC

Session Chair: TBC

17:45 Summary,

11:00 IS Ex	IS Pulsed Power for Injection and traction	A. McFarland
12:00 PR	ISM RF System	C. Ohmori
Session 7 Recent Pro Session Cl	: 14:00 to 15:40 gress in FFAG Development hair:	
14:00 Be	am Extraction in Proton FFAG, PAMELA	T. Yokoi
14:40 Di Ma	scussion on Injection/Extraction, atching, Simulations etc	J. Pasternak
15:40 Co	ffee	
Session 8	: 16:00 to 17:45	
Discussio	n on Challenges in Hardware for PRI	SM and Key Steps

PRISM-FFAG workshop

- at Imperial College London, UK, 1st- 2nd July, 2009
 - organized by J.Pasternak
 - http://www.hep.ph.ic.ac.uk/muec/meetings/20090701/agenda.html
- The workshop aims to cover the technological challenges in realizing an FFAG based muon-toelectron conversion experiment which has a sensitivity of <10⁻¹⁸
 - Physics of Muon-to-Electron Conversion.
 - Status of PRISM-FFAG.
 - Beam dynamics, design and simulation studies for PRISM.
 - Hardware developments for FFAG accelerators.
 - Challenges of beam injection and extraction.
 - Recent developments in FFAG accelerators.
 - The **Collaboration** and **PRISM Task Force** are proposed in the workshop, and being organized and created. You are welcomed to join.
 - injection/extraction, kicker design
 - re-optimization of the PRISM-FFAG design
 - possibility of new lattice
 - long straight section, dispersion suppressor, ...

MUSIC project Muon beam is coming to the RCNP, Osaka-Univ. Details will be presented by M.Yoshida in this afternoon.

Summary

- PRISM provides a solution to improve the μ-e conv. sensitivity less than 10⁻¹⁷ adopting a muon storage ring, which make mono-energetic and pure muon beam. A staging scenario of mu-e conversion experiment (COMET - PRISM) was proposed in Japan.
- We had R&D program on the muon storage ring from 2003 to 2009. Many successful outcomes were achieved.
 - large aperture FFAG,
 - high field gardened RF system
 - 6-cell FFAG and phase rotation test.
- The collaboration and task force for the PRISM-FFAG were created at the workshop in UK. We will continue to study the PRISM-FFAG to realize the ultimate μ -e conv. experiment.