Shielded RF Lattice for the Muon Front End

Chris Rogers,
Accelerator Science and Technology Centre (ASTeC),
Rutherford Appleton Laboratory

RF Problem

- Neutrino Factory baseline front end has RF in 2 T B-fields
 - Experiment indicates this will not work
 - Many caveats
 - Available RF voltage may be significantly reduced
 - Major technical risk
- Several schemes to overcome this
 - Fancy RF cavities (new materials, liquid N₂ cooling...)
 - Magnetic Insulation
 - High pressure gas to insulate RF cavities
- These are multi-million \$, >5 year R&D plans that may not work
 - Probably necessary for Muon Collider
- For a Neutrino Factory, can we do something simpler?
 - Adapt lattices to keep RF cavities in low fields "Shielded RF"
- For this talk I concentrate on the cooling section
 - Stronger B-fields, higher RF voltages, more constraints on lattice

Problem Scope

- What is the scope of the problem?
 - Baseline has RF cavities in ~ 2 T field
 - Guess peak gradient reduced factor 2-3
 - From 800 MHz studies
 - Need 200 MHz data
 - See, eg C. Rogers and G. Prior, Cooling in Reduced RF Gradient, PAC09
 - Also earlier study by Juan Gallardo (in ISS?)

Shielded RF

- Increase cell length to remove RF from fringe fields
 - Further shielding provided by iron
- Look at cooling section
 - This is where the RF is most limited
 - This is where optics are most demanding
- How well can we cool in this shielded scenario?
- How well can we optimise the cooling lattice?
- Try to keep RF cavities in < 0.1 T fields
- Liquid Hydrogen absorbers

Lattice quality

- Two criteria for lattice quality
- \blacksquare β function => how tightly focussed the beam is at the absorber
 - Determines how much cooling we get
 - Require good β function over a large momentum range
- Acceptance => the beam emittance that makes it through the lattice
 - Determines how much beam we get through
- Scale as ~ <B₂²>/p

β vs Cell Length

- We want tight focussing on the absorbers for good cooling performance
 - Tight focussing => more cooling
 - Aim for $\beta < \sim 1500$ mm over ~ 150 300 MeV/c (liquid Hydrogen)
- As cell length gets longer dβ/dp gets worse
 - Making it hard to contain a beam with a large momentum spread
- Keep cell as short as possible
 - To keep B₂ off RF, need to reduce solenoid fringe field

Dynamic Aperture vs Radius

- Reducing radius of coil reduces lattice acceptance
 - Aim for acceptances >~ 100 mm
 - Naively "expect" that reducing coil radius decreases acceptance
 - "Particles travel through region of poor field quality near the coils"
- In solenoid, optics is uniquely defined by on-axis field
 - So any attempt to curtail the fields is like reducing the coil radius
 - What does "poor field quality" really mean?

Non-Linear Terms

- Non-linear terms => $x_{out} = a_{ij} x_{in}^{i} p_{in}^{j}$
- 2nd order terms have i+j=2
 - Purely chromatic, can be ignored
- 3rd order terms have i+j=3
 - Increase by order of magnitude in short fringe field
 - In theory go as d²B_z/dz²
- For very short fringe fields 3rd order terms become large
 - d²B₂/dz² becomes large
 - e.g. consider tanh model for B_z(r=0)
 - $B_z = \tanh[(z-z_0)/\lambda] + \tanh[(z-z_0)/\lambda]$
- Introducing bucking coils etc is equivalent to reducing coil radius
 - Not helpful

Stepping Error vs Non-Linear Term

Coil Length

- Can we make progress by tweaking coil length?
 - Long coil needs lower B_z to keep
 <B_z²> constant => more space
 - But field extent is longer => less space
- These effects ~cancel
 - Dashed line = field free length
 - B_z < 0.5 T (assume shielding for rest)
 - Per 2.5 m half-cell
 - Full line = acceptance at 200 MeV
- Are there practical reasons that influence coil length?
 - Longer => Lower B_z
 - Longer => Lower current densities
 - Longer => More hardware required

Lattice Choice

fact

- In light of this what lattice?
- Try 4 m, 6 m or 8 m cell
 - Longer cells have worse optics
 - Longer cells have better RF packing fraction
 - 1/8, 1/3, 1/2 respectively
- Try long coil or short coil

Coils and Shielding

- Assume iron shielding on coils
 - Makes handling magnets harder
 - e.g. 14 tonnes Fe (long coil)
 - Lower currents required on coils
 - Reduces fringe field on RF
 - Shield tunnel from intense fields
 - Stray iron does not affect beam
 - Stray fields do not affect hardware
 - Stray fields do not affect personnel
- Compare long coil or short coil
- Long coil may be preferable
 - Less shielding
 - Lower current densities
 - Normal conducting possible?
 - More conductor

Shielded vs Unshielded Fields

z [mm]

- long coil, shielded, 15.6 A/mm² 1000 2000 3000 4000 5000 z [mm] long coil, unshielded, 17.7 A/mm² 1000 2000 3000 4000 5000
- Shielding introduces slightly higher field 2nd derivative (blue)
- Reduces absolute field value (black) noticeably at fringes

Shielded vs Unshielded Optics

- ullet eta unaffected by presence of shielding, coil length
 - $\langle B_z^2 \rangle$ = same for all lattices
- Acceptance is slightly affected by short vs long coil
 - Can improve short coil acceptance by increasing coil radius
 - But larger coils means more shielding etc
- Acceptance is ~unaffected by shielding

Long Coil Versus Short Coil

- Compare long coil with short coil
 - 3 m cell, 30° RF phase
 - Count number of muons in accelerator acceptance
 - 30 mm transverse, 100 300 MeV/c momentum bite
 - Short coil does a bit better
 - ~52% compared to ~42%
 - Probably means my "long coil" is too low radius
 - Perhaps initial mismatch is a problem

Cell Length

- Cell length optimisation
 - Simulated using long coil option
 - Race between RF packing fraction and β function
 - Higher RF packing => quicker cooling
 - Shorter lattice => lower β function (better equilibrium emittance)
- 3m lattice is optimal
 - Worry about initial beam loss
 - Nb low statistics
 - Get ~ 40 % with long coil
- Case for beta tapering?

Lower B-Field Lattices

- Cooling channels with RF in high magnetic fields is tough
 - High, unknown technical risk for the Neutrino Factory
 - Solutions with >5 year, multi-million \$ R&D programmes which may not work (impatient!)
- It is possible to build a cooling channel that keeps RF cavities away from strong fields
 - Reduced cooling performance compared with baseline
 - 3 m lattice preferred
 - It's all a bit marginal it can be built, but worry about reality
 - Need to examine effect of windows
 - Need to run with higher statistics
 - Need to compare with ICOOL
 - Beta tapering might help
- Bucked coil lattice is equivalent to reducing coil radius
 - Spherical aberrations drastically reduce transverse acceptance
 - Not much progress to be made here