Scaling FFAG lattices for muon acceleration

T. Planche, Y. Mori, T. Uesugi, J.B. Lagrange, Kyoto University

Nufact09 - July 2009

Motivations

Use the large transverse acceptance of scaling FFAG lattices

while using constant RF frequency acceleration to reach **high accelerating** gradient.

Motivations

Use the large **transverse acceptance** of scaling FFAG lattices

while using constant RF frequency acceleration to reach **high accelerating** gradient.

Possible with harmonic number jump acceleration!

Scaling FFAG Lattices For Muon Acceleration

Outline

I. Reminder on harmonic number jump acceleration.

II. Harmonic number jump with RF cavities all around the ring.1- Each cavity has to work at a different frequency: need for a double beam lattice.

- 2- Lattice example and tracking results.
- 3- Issue of the excursion: need dispersion suppressor!

III. Scaling FFAG lattice with reduced excursion areas.1- Example of a FFAG dispersion suppressor.2- Lattice example Lattice details and tracking results.

Reminder on harmonic number jump acceleration

To jump one harmonic every turn: $T_{i+1} - T_i = \frac{1}{f_{RF}}$

Reminder on harmonic number jump acceleration

To jump one harmonic every turn: $T_{i+1} - T_i = \frac{1}{f_{RF}}$

Figure 1 - Revolution time as a function of particle energy in the case of a 3 to 10 GeV scaling FFAG ring, with k = 145 and average radius = 120 m.

Energy gain per turn must follow: $\Delta E_i =$

 $\frac{1}{f_{RF} \cdot \left[\frac{\Delta T}{\Delta E}\right]_{E_i}}$

Scaling FFAG Lattices For Muon Acceleration

HNJ with cavities distributed around the ring

Assuming that the initial number of harmonic h_0 is large we get^(*):

$$f_k \approx f_0 (1 - \frac{1}{h_0} \cdot \frac{k}{N})$$

Figure 2 - N cavities homogeneously distributed around the ring.

^(*)look at the proceedings of PAC'09 for all details.

Every cavity working at a constant frequency f_k but the frequency has to be tuned to a slightly different value!

 μ^+ and μ^- beams cannot be accelerated simultaneously if they circulated in opposite directions...

Scaling FFAG Lattices For Muon Acceleration

Need for a double beam lattice

A solution to circulate a particle and its antiparticle **in the same direction** in a scaling FFAG ring is to use a FD-symmetric lattice:

Figure 3 - Double beam FFAG lattice (k = 145). Closed orbits of μ + and μ - circulating in the same direction. Results are obtained from Runge-Kutta stepwise tracking in hard-edge field.

Scaling FFAG Lattices For Muon Acceleration

3 to 10 GeV muon double beam FFAG

Table 1 - ring parameters		
Mean radius	120 m	
Number of cells	72	
Field index k	145	
Packing factor	0.7	
B_{max} (at 10 GeV)	2.6 T	
Horiz. phase adv. per cell	93.2 deg.	
Verti. phase adv. per cell	30.2 deg.	
Mean RF frequency	$\sim 400 \text{ MHz}$	
RF peak voltage	$1.6 \mathrm{GV/turn}$	
Number of RF cavities	72	

Figure 4 - Schematic view of a 3 to 10 GeV double beam muon FFAG ring.

1st example: 3 to 10 GeV muon double beam FFAG

4D tracking - 8 turns acceleration cycle with a constant RF peak voltage = 1.6 GV/turn:

Figure 5 - 8 turns acceleration cycle plotted in the **longitudinal phase space**, at the location of the first cavity. Initial beam emittance is **0.21 eV.s x 10 000 \pi mm.mrad** (normalized).

Scaling FFAG Lattices For Muon Acceleration

Issue of the excursion: need for dispersion suppressor insertions!

Harmonic jump condition:

$$T_{i+1} - T_i = \frac{1}{f_{RF}}$$

In the same time:

$$\frac{\Delta C_i}{\beta c} = T_{i+1} - T_i$$

In case of highly relativistic particles:

$$\Delta R_i \approx \frac{c}{2\pi f_{RF}} = \frac{\lambda_{RF}}{2\pi}$$

average excursion =
$$\lambda_{RF} \cdot \frac{N_{turns}}{2\pi}$$
 \longrightarrow Need for excursion reduced areas!

Scaling FFAG Lattices For Muon Acceleration

Dispersion suppressor with FFAG magnets

12

Figure 4 (slide #10)- Schematic view of a 3 to 10 GeV double beam muon FFAG ring. Figure 8 - Schematic view of a 3 to 10 GeV double beam muon FFAG ring with 2 excursion reduced insertions.

13

Scaling FFAG Lattices For Muon Acceleration

|4

Table 2 - Ring main cells parameters

120 m
2×30
5 deg.
145
0.9
2.3 T
92.9 deg.
31.1 deg.

Figure 8 - Schematic view of a 3 to 10 GeV double beam muon FFAG ring with 2 excursion reduced insertions.

Table 3 - Dispersion suppressor cells parameters

Mean radius	120 m
Number of cells	4×2
cell opening angle	4.24 deg.
Field index k	192.4
Packing factor	0.9
B_{max}	2.7 T
Horiz. phase adv. per cell	90.0 deg.
Verti. phase adv. per cell	26.6 deg.

Figure 8 - Schematic view of a 3 to 10 GeV double beam muon FFAG ring with 2 excursion reduced insertions.

Table 4 - excursion reduced areas cells parameters

Mean radius	360 m
Number of cells	2×10
cell opening angle	1.304 deg.
Field index k	858.1
Packing factor	0.3
B_{max}	2.4 T
Horiz. phase adv. per cell	55.9 deg.
Verti. phase adv. per cell	14.8 deg.

Figure 8 - Schematic view of a 3 to 10 GeV double beam muon FFAG ring with 2 excursion reduced insertions.

Study of linear parameters using Runge-Kutta stepwise tracking in soft edge field model:

Figure 9 - Tune variation between 3 and 10 GeV in the lattice with insertions (from stepwise tracking in a soft edge field model).

Scaling FFAG Lattices For Muon Acceleration

Study of linear parameters using Runge-Kutta stepwise tracking in soft edge field model:

Figure 10 - **Horizontal** beta function at 6 GeV (half a turn is presented).

Study of linear parameters using Runge-Kutta stepwise tracking in soft edge field model:

Figure 11 - **Vertical** beta function at 6 GeV (half a turn is presented).

Scaling FFAG Lattices For Muon Acceleration

Beta function variation with energy:

Figure 12 - Horizontal beta function at 3 GeV (blue) and 6 GeV (red).

Scaling FFAG Lattices For Muon Acceleration

21

Very large transverse acceptance: here ~ 50 000 π .mm.mrad (normalized) at 6 GeV.

Figure 13 - Horizontal phase space plot of 5 particles ($E_{kin} = 6 \text{ GeV}$)with different initial amplitudes (over 300 turns).

Scaling FFAG Lattices For Muon Acceleration

Conclusion

Advantages of this scheme:

- * Large transverse acceptance.
- * Large longitudinal acceptance, and no emittance degradation during acceleration.
- * Possible with RF frequency in the 200 MHz to 400 MHz range.
- * Can accelerate μ + and μ simultaneously.

To be improved:

* Assuming super-ferric type of magnets (Bmax ~ 2.5T) ring size is still large (about 850 m circumference).

* Excursion in the reduced excursion area is still about 0.5 m-, needs to be further reduced.

Thank you!

Scaling FFAG Lattices For Muon Acceleration

Additional material...

Scaling FFAG Lattices For Muon Acceleration

1st example: 3 to 10 GeV muon double beam FFAG

4D tracking - 8 turns acceleration cycle with a constant RF peak voltage = 1.6 GV/turn:

Figure 5 - 8 turns acceleration cycle plotted in the longitudinal phase space, at the location of the first cavity. Initial beam emittance is
0.21 eV.s x 10 000 π mm.mrad (normalized).

Scaling FFAG Lattices For Muon Acceleration

Figure 6 - First turn (red squares) and last turn (green dots) of the 8 turns acceleration cycle plotted in transverse phase space. Initial beam emittance is 0.21 eV.s x 10 000 π mm.mrad (normalized). Nufact09 - July 2009

Horizontal beta function at 6 GeV (red) and 3 GeV (blue).

Horizontal beta function at 6 GeV (red) and 10 GeV (Green).

Scaling FFAG Lattices For Muon Acceleration

Vertical beta function variation with energy:

Vertical beta function at 6 GeV (red) and 3 GeV (blue).

Vertical beta function at 6 GeV (red) and 10 GeV (Green).

Scaling FFAG Lattices For Muon Acceleration