IDS-NF Accelerator Working Group Status and Plans

J. Scott Berg Brookhaven National Laboratory NuFact 09 24 July 2009

IDS-NF Accelerator Systems Overview

Neutrino

IDS-NF Accelerator Systems Baseline

- Proton driver
 - □ 4 MW, 50 Hz, 3 bunches, 1–3 ns long,
 5–15 GeV energy
- Hg jet target
- Front End
 - □ Decay channel: $\pi \to \mu$ □ "Neuffer" buncher and phase rotation □ Modest amount of cooling

IDS-NF Accelerator Systems Baseline

 Acceleration: efficiency in RF use □Linac: to 0.9 GeV □ Two RLAs: 0.9–3.6 GeV, 3.6–12.6 GeV □ FFAG: 12.6–25 GeV ○ Two 25 GeV storage rings Racetrack shape □ 3000–5000 km and 7000–8000 km baselines Each can store both signs simultaneously

IDS-NF Accelerator Systems Overview

Target Area Structure

6

- MERIT: can spread bunches over several 100
 µs
 - Time to top off SC RF cavities in acceleration
- Optimized some Hg jet geometry parameters
 Optimal production in 5–10 GeV range
 Preference for beam on a particular side of jet
- Beginning studies of Hg pool dynamics

Hg Target Production vs. Energy (Ding)

8

Hg Pool Splash (Davonne)

Initial Field Taper at Target

- Field profile "improved" for Study IIa from Study II
- Minimal performance gain
- Required magnet parameters unrealistic
- O Switch back to Study II field profile
 - Stop taper at 1.75 T (Study IIa) instead of Study II

Studylla Capture Solenoid Parameters (Loveridge)

- Verify production results with second code
- Production results with nonzero-emittance beam
- Continue target engineering work
- Design system with Study II taper to 1.75 T

Front End

- Task of front end
 - Convert large energy spread beam into small energy spread bunch train
 - Reduce transverse emittance
- Primary challenge: high RF gradients in magnetic field
- Goal: choose front end design compatible with gradient/magnetic field imitations

Achievable Cavity Gradient vs. Magnetic Field (Moretti)

Neutrino

Front End Progress

- Shorter buncher/rotation designed (Neuffer)
 Higher RF gradients than previously
 - □ Not larger than cooling...
- Experimental and theoretical studies of RF breakdown in magnetic field
- Beginning studies of cavity shielding: results not too bad
- Neuffer phase buncher/rotation for low-frequency CERN scheme

Front End Tasks

- Study other lattice possibilities
- Make decision on realistic gradient/magnetic field relation
 - Won't have certainty on our time scale
- Make decision on lattice design
- CERN looking at low-frequency scheme (not baseline)

Linac/RLA Acceleration Progress

- All lattices and transfer lines designed (Bogacz)
- First pass at tracking through the system
- Error analysis
- All results good so far

Linac/RLA Acceleration Progress

More complete tracking of the system (ZGOUBI/other)

Engineering of components

FFAG Acceleration Progress

- Biggest challenge: injection/extraction
- Large transverse amplitude
 - Couples to longitudinal dynamics
- Injection/extraction scenario designed
 - □ Fields limited to 0.1 T
 - G kickers for FODO injection and extraction
 - Superconducting septum
 - Larger aperture magnets
 - Orbit distortions analyzed

FFAG Extracted Beam (Pasternak)

Magnet Aperture in FFAG Extraction Region (Kelliher)

Leutrino

FFAG Acceleration Progress

- Started injection/extraction for triplet
- Updated designs: space for injection/extraction
- Chromaticity correction (Machida)
 - Fix transverse amplitude coupling to longitudinal
 - Design with corrected chromaticity
 - Dynamic aperture loss, improved by partial correction

Designed insertions (injection/extraction)

Dynamic Aperture vs. Sextupole Strength

Neutrino Fac

on Co

FFAG Acceleration Plans

- Finish injection/extraction for triplet
- Engineering of injection/extraction
- Engineering of entire system
- Decide between FODO/triplet designs
- Determine amount of chromaticity

Cost

Optimize design for beam quality

Scaling FFAG

- Scaling FFAG for acceleration
- Not in baseline design
- Both signs same direction
- FODO lattice
- Harmonic number jump
- Two cell types
 - Lower k in arcs for HNJ
 Higher k in straights to fit in cavity

FFAG FODO Lattice Trajectories (Mori/Planche)

Neutrino,

Storage Ring Progress

- Have design for 1600 m ring (Prior)
 - Tracked, excellent dynamic aperture
- RF not needed to keep trains separated if energy spread modest
- Shorter 1000 m ring possible, but
 - Need RF to keep trains separated
 Higher field magnets in arcs
 Likely less efficient
 Unlikely cost savings: motivation political

Storage Ring Dynamic Aperture (Apollonio)

Neutrino F:

Summary

 Making decent progress on subsystem designs
 Biggest challenge still front end: RF with magnetic field

Ultimate goals

Track beam through entire system
 Engineer and cost

