Coherent-m production experiments review

Hide-Kazu TANAKA MIT

Outline

- Introduction
- Measurements in past
- Recent results at low energy
 - K2K, MiniBooNE, SciBooNE
- Future prospect
- Summary

Coherent pion production

Neutrino interacts with nucleons *coherently*, producing a pion
No nuclear breakup occurs

Charged Current (CC): $v_{\mu}+A \rightarrow \mu+A+\pi^+$ Neutral Current (NC): $v_{\mu}+A \rightarrow v_{\mu}+A+\pi^0$

Coherence requires:

$$t = (q - p_{\pi})^2 < 1/R^2$$

where R is the size of the nucleus.

From the Rein-Sehgal model:

1)
$$\sigma(CC) = 2 \sigma(NC)$$

2) $\sigma(A) \sim A^{1/3}$
3) $\sigma(v) \sim \sigma(v)$

Characterized by a small momentum transfer to the nucleus, forward going π .

V

Ł

Measurements in past

- Measurements for v, \overline{v} CC and NC modes
 - for various nuclear targets
- High energy region: >7GeV (CC), >2GeV (NC)
- R&S model agrees with the high energy results.

Assume:

- A^{1/3} dependence
- σ(CC coherent)=2*σ(NC coherent)

	Experiments	CC/NC	v / \overline{v}	E (GeV)	Target <a>
	Aachen-Padova	NC	v, \overline{v}	2	Al <27>
	Gargamelle	NC	v, \overline{v}	2	Freon <30>
	CHARM	NC	v, \overline{v}	20-30	Glass <20.7>
	CHARM II	СС	v, \overline{v}	20-30	Glass <20.7>
	BEBC	СС	\overline{v}	5-100	Ne/H2 <20>
	SKAT	CC, NC	v, \overline{v}	3-20	Freon <30>
	FNAL 15-ft	NC	ν	2-100	Ne/H2 <20>
	FNAL 15-ft E632	CC	$\nu, \overline{\nu}$	10-100	Ne/H ₂ <20>

4

Recent results at low energy (~1GeV)

v CC coherent π^+

K2K-SciBar: Phys. Rev Lett. 95, 252301 (2005)

- <Ev>=1.3 GeV
- Target: Scintillator (CH)
- Tracking detector
- Experimental signature:
 - Two MIP-like (μ+π) tracks
 - By looking at recoil proton (vertex activity) isolate coh-π

v NC coherent π^0

MiniBooNE: Phys. Lett. B664, 41 (2008)

- Ev>=1.1GeV
- Target: Mineral oil (CH₂)
- Cherenkov detector
- Experimental signature:
 - Two e-like ring $(\pi^0 \rightarrow \gamma \gamma)$ events
 - With pion in forward direction

Recent results at low energy (~1GeV)

<u>v CC coherent π^+ </u>

K2K-SciBar: Phys. Rev Lett. 95, 252301 (2005)

v NC coherent π^0

MiniBooNE: Phys. Lett. B664, 41 (2008)

No evidence of CC coherent π prod.

Clear evidence of NC coherent π prod.

More NC-π⁰ from MiniBooNE

 ν Mode NC π^0 Box Rate, Coherent Models

C.E. Anderson at Nulnt09

Coherent Production Models

- Models for NC coherent π⁰ production demonstrate wide variabilities in their predictions
- Forward angular distribution (particularly for antineutrino mode) is very sensitive to predictions
- MiniBooNE uses the Rein–Sehgal^a prediction scaled by 0.65 by default in MC; also incorporated predictions from Hernandez, et al^b, and Alvarez-Ruso, et al^c
- ^aNucl. Phys. B**223**, 29, (1983)

 $b_{arXiv:0903.5285v1; thanks to Juan Nieves for predictions$

^CPhys. Rev. C **76**, 068501 (2007); thanks to Luis Alvarez-Ruso for predictions

New NC- π^0 results for both ν and $\overline{\nu}$ beam modes.

- Demonstrated comparison between data and models
- v and \overline{v} data suggest:
 - Clear evidence of non-zero NC coh-π
 - Forward angular distribution is sensitive to model predictions

 B We NE Yale
 C.E. Anderson
 NC 1π⁰ Production
 13/22
 to r

 NOTE: MC distributions
 are absolutely normalized

CC coh-m results from SciBooNE

Phys. Rev. D78 112004, 2008

MRD stopped sample <Ev>= 1.1 GeV

MRD penetrated sample <Ev>= 2.2 GeV

No evidence of CC coherent pion production was found. Confirmed K2K results

Upper limit on cross section

Measured upper limits on $\sigma(CC \text{ coherent } \pi)/\sigma(CC)$ ratios are converted to upper limits on absolute cross sections by using σ (CC) predicted by MC simulation.

New coherent π models:

- Singh et al., Phys Rev. Lett. 96:241801 (2006). Paschos and Kartavtsev, Phys. Rev D74:054007 (2006).
- Alvarez-Ruso et al., Phys. Rev C75:05501 (2007). Nakamura et al. arXiv:0901.2366
- ·Hernandez et al. Phys. ReV D76, 033005 (2007),
- D79, 013002 (2009)

Recently proposed CC coherent π models predict production of CC coherent π events just below our upper limit.

- \rightarrow Search for \overline{v} CC coherent pion production,
 - since \overline{v} data is expected to be more sensitive to look at CC coherent π production than v data.

Search for v CC coherent π at SciBooNE

Used the same selection criteria as v coherent π

(NOTE: no syst. error included, no MC tuning yet)

 \overline{v} coherent π sample also show <u>data deficit</u> at low Q² region. But data suggest non-zero CC coherent π component.

Search for v CC coherent π at SciBooNE

4σ level "data excess".

And consistent with v CC coh- π upper limit within stat error.

11

v CC coherent π sample in θ_{π} vs θ_{μ}

v CC coherent π sample in θ_{π} vs θ_{μ}

v CC Coherent πv coh-π, $θπ < 35^{\circ}$ Preliminary & stat. error only

Signal region: Q²<0.1
- 87 events observed
- 31 non-coherent π events (BG)
→ Data - BG: 56±11 (stat)
NEUT (R&S) prediction: 92 (v+v)

\overline{v} coh- π , $\theta\pi > 35^{\circ}$

Signal region: Q²<0.1
- 52 events observed
- 49 non-coherent π events (BG)
→ Data - BG: 2.6±8.5 (stat)

NEUT (R&S) prediction: 59 ($v+\overline{v}$)

CC coherent π component at small θ_{π} region.

v CC coherent π

K. Hiraide at NuInt09

- Similar enhancement in v data
 - Pions from CC coh-π production tend to be produced more forward than prediction.
 - Important to measure π kinematics.
- In order to describe data, pion kinematics description needs to be improved.

NC-π⁰ from SciBooNE

mass in 2γ system

NC-π⁰ from SciBooNE

Reconstructed invariant

mass in 2γ system

NC-π⁰ from SciBooNE

Future prospect

- MINERvA (NuMI at Fermilab) has an excellent capability for CC and NC coherent π productions
 - Wide energy range: Ev ~2-20 GeV
 - Several nuclear targets: He, C (and CH), Fe, Pb
 - Reconstruct energy of final state hadronic system.
 - Data taking starts soon.
 - Have been running with the full Tracking Prototype in the v beam since mid April 2009!

17

Summary

- Several measurements on coherent pion production.
 - v, \overline{v} , CC and NC modes
 - Recent results on CC/NC coherent π at low energy,
 ~1GeV.
 - Although good agreement between high energy results and R&S model, not so for low energy results.
- Data suggest: pions from CC coherent π tend to be produced more forward than R&S model prediction.
- A variety of models has been proposed.
- New experimental results will be published shortly.
 - Experimental & theoretical studies are in progress.

CC-π⁺ at MiniBooNE

J. Nowak at Nulnt09

SciBooNE efficiency

CC coherent pi efficiency vs P π , $\theta\pi$, and $\theta\mu\pi$

K. Hiraide at NuInt09

22

Ev, Q² reconstruction

Q2 resolution for CC coherent π

Q2 resolution of CC-coherent πevents Mean: -0.024 (GeV/c)² Sigma: 0.016 (GeV/c)²

\overline{v} Coherent pion production

Several measurements in past ('80-'90).

Measurements are at high energy region. Rein-Sehgal model well describes the data.

High energy results and the model suggest: cross sections of coherent π prod. for v and v are similar size. $\sigma(vCC-coh) \sim \sigma(vCC-coh)$

Solid line: Rein-Sehgal model Dotted line: Bel'kov-Kopeliovich

 → v data is expected to be more sensitive to look at CC coherent π production than v data.
 ∵ σ(v CC) > σ(v CC)

Reconstructing π0

Y. Kurimoto

Reconstructed $\pi 0$ vertex position mc reliminary SciBar NEntries 90 NC any pi0 70 60 CC any pi0 CC other Dirt Dirt 50 Cosmic events 30 20E 10**b** 0_200 -150 -100 -50 0 50 100 250 150 200 Z cm

ex. Dirt event SciBar $\pi 0$ vertex z=0 Z (beam direction)

Reconstructed invariant mass for 2γ system

Data: ~550 events MC: ~60% NCπ0 purity

Neutrino cross section (NEUT prediction)

• QE

- Llewellyn Smith, Smith-Moniz
- M_A=1.2GeV/c²
- P_F=217MeV/c, E_B=27MeV (for Carbon)
- Resonant π
 - Rein-Sehgal (2007)
 - M_A=1.2 GeV/c²
- Coherent π
 - Rein-Sehgal (2006)
 - M_A=1.0 GeV/c²
- DIS
 - GRV98 PDF
 - Bodek-Yang correction
- Intra-nucleus interactions

Normalization for MC sample at SciBooNE

- Use "fractional" normalization for MC sample, which is defined by CC event selection.
- For example...

	Data	MC		
CC selection (SciBar-MRD matching)	30,337	30,337 ←	Define normalization: Start with the same #	
# of track (2-track selection)	5,939	5898	or events	
PID (μ+π selection)	2,255	2,388		
Vertex activity (isolate coh-π)	425	661		

NC-1 π^0 meas. at MiniBooNE

- MiniBooNE detector at FNAL
 - 800 ton mineral oil (CH₂) Cherenkov
- Neutrino energy: 0.7GeV (peak)
- 1st measurement of NC coherent-π⁰
 below 2GeV Phys. Lett. B664, 41 (2008)
- 28,000 NC-1π⁰ events
 - S/N~30
- Coherent fraction in NC-1π⁰; N_{coh}/(N_{coh} + N_{res}) = (19.5±1.1± 2.5)%
 - Model predicted (Rein-Sehgal) 30% fraction.
 - 1.5 times lower than default prediction.
- Higher production rate wrt predictions at low π^0 momentum.

Comparison

