

Liquid Scintillation Detectors for High Energy Neutrinos

Stefanie N. Smith

Department of Physics and Astronomy, University of Hawaii

See: arXiv:0902.4009 "High Energy Neutrino Physics with Liquid Scintillation Detectors" John G. Learned

Fermat's Principle

"The path taken between two points by a ray of light is the path that can be traversed in the least time."

- As muon travels through liquid scintillator, photons are emitted isotropically.
- A "Fermat Surface" (Cerenkov and spheres) is defined by the wavefronts of first hit times
 - Huge statistics determining this surface

The Fermat Surface

- Electron and muon events are distinguishable by differences between equi-charge and equi-time surfaces
- There is much more information... how complex a topology can we extract?
- Opens up the study of high energy (~1GeV) neutrino interactions with LS detectors
- Potential for long baseline experiments
- Does not interfere with lower energy (MeV) physics (e.g. reactors, geonus, supernovae, etc.)

Fermat and Equi-Charge Surfaces

 Approx. 5m long muon track centered in a 40m x 40m right cylinder detector

Time and Charge Fits

Simple Point Fits (Q and T) Give Center of Track and point Near Origin

Stefanie Smith. University of Hawaii at Manoa

Further: Much Information in Time Distribution of Hits (PMT Waveform)

Sample PMT hit time distributions from top of detector:

- Muon event is focused in space and spread out in time
- Electron shower is quicker and more spread out in space

GEANT4 Simulation

Even without the decay, there are distinguishing features.

Muon decay clearly distinguishes 1Gev muon and electron events.

Stefanie Smith. University of Hawaii at Manoa

First Results on Tomographic Reconstruction

Stefanie Smith. University of Hawaii at Manoa

Fermat Surface Cross-section for Two Tracks

Stefanie Smith. University of Hawaii at Manoa

Applications

- Long Baseline with accelerators ~ 1 GeV
 - Hanohano with Tokai Beam?
 - LENA with CERN beam?
 - New DUSEL Experiment with Fermilab Beam?
- Nucleon Decay (high free proton content)
 - See details of decays such as Kaon modes
- Particle Astrophysics (low mass WIMPS,...)
- All the Low Energy Physics (geonus, reactor studies, monitoring, solar neutrinos.....) unimpeded!

Outlook

- Large LS detectors are capable of detailed neutrino physics.
- Further detailed simulations and laboratory studies needed.
- This technique opens new avenues for neutrino physics with LS detectors.

