How do Neutrino Scattering Results Influence Parton Distribution Function Fits?

Jorge G. Morfín Fermilab NuFact09 - Chicago, IL

Outline

- What do neutrinos give us that other processes do not (or at least not so directly) with respect to PDFs
- Quick review of what we have and have not learned about PDFs
 - **•** A special look at high-x in particular d/u as $x \rightarrow 1$
 - ▼ How neutrinos can help us here...
- What hinders us from using neutrino results in global PDF fits...

What's So Special about Neutrinos with respect to PDFs?

Recall neutrino's unique ability to taste particular flavors Using Leading order expressions (for isoscalar target):

$$F_{2}^{\overline{V}N}(x,Q^{2}) = x\left[u+\overline{u}+d+\overline{d}+2\overline{s}+2c\right]$$

$$F_{2}^{VN}(x,Q^{2}) = x\left[u+\overline{u}+d+\overline{d}+2\overline{s}+2\overline{c}\right]$$

$$xF_{3}^{\overline{V}N}(x,Q^{2}) = x\left[u+d-\overline{u}-\overline{d}-2\overline{s}+2c\right]$$

$$xF_{3}^{VN}(x,Q^{2}) = x\left[u+d-\overline{u}-\overline{d}+2\overline{s}-2\overline{c}\right]$$

How neutrinos help us constrain the Strange Sea

$$\nu N \to \mu^- c X \to \mu^- \mu^+ X$$

 $\bar{\nu} N \to \mu^+ c X \to \mu^+ \mu^- X$

Where are we in understanding PDFs from Global Fits

CTEQ 6.6 Parton Distributions of the Proton

Comparison of three recent PDF global fits Things start getting nasty as x increases

How has our picture of the PDF's evolved over the years?

The non-strange sea quarks: do they observe isospin symmetry?

The non-strange sea quarks

Measurement of F_2^{n} - F_2^{p} in DIS experiments

The non-strange sea quarks

D-Y Asymmetry exerts its Influence - NA51 and E866

Strange Content of the Nucleon Structure

Experimental input: (low statistics) data on Dimuon (charm) production in Neutrino-Nucleus scattering.

No Qualitatively New Development

CCFR-NuTeV (high statistics) data:

dimuon production from vN and anti-vN scattering.

Valence Quarks:

NLO fits to fixed-target DIS data sets

HERA exerts its influence

All in the details now, at least for lower x

Similar Story for the D quark

NLO, no dramatic changes

The impact of HERA

It looks like we know the d and u quark fairly well...right?

CTEQ uncertainties in u and d quark fits

Theory uncertainties NOT included

Fig. 9 : Uncertainty bands for the u- and d-quark distribution functions at $Q^2 = 10 \,\text{GeV}^2$. The solid line is CTEQ5M1 and the dotted line is MRST2001.

d Uncertainty at higher Q

Strange Quark Uncertainties

Uncertainty in the Gluon Distribution

Normalized to CTEQ6.1M

Relative Concentration of Valence Quarks in the Nucleon

Recent Global Fit look at d/u... What's going on at high-x?

Latest look at d/u

Alberto Accardi, Eric Christy, Cynthia Keppel, Wally Melnitchouk, Peter Monaghan, J.G.M., Jeff Owens and Lingyan Zhu

It all comes down to the correction for nuclear effects in deuterium!

Extraction of d/u using deuterium targets involves **nuclear D₂ corrections**

Range of Deuteron Corrections in the Literature (a few somewhat dated)

Wally Melnitchouk:

The cleanest, most straightforward way to study high x quarks, including the d/u ratio is with v / \overline{v} - proton scattering Neutrino - Proton Scattering No messy nuclear corrections!

$$\begin{array}{l} F_{2}^{\nu p} = 2x \, \left(d + \bar{u} + s \right) \\ F_{2}^{\bar{\nu}p} = 2x \, \left(u + \bar{d} + \bar{s} \right) \end{array} \xrightarrow{\text{At high } x} \frac{F_{2}^{\nu p}}{F_{2}^{\bar{\nu}p}} = \frac{d}{u} \\ xF_{3}^{\nu p} = 2x \, \left(d - \bar{u} + s \right) \qquad F_{2}^{\nu p} - xF_{3}^{\nu p} = 4x\bar{u} \\ xF_{3}^{\bar{\nu}p} = 2x \, \left(u - \bar{d} - \bar{s} \right) \qquad F_{2}^{\bar{\nu}p} - xF_{3}^{\bar{\nu}p} = 4x\bar{d} \end{array}$$

Why does CTEQ NOT Use Neutrino Data in Global Fits and Why Global Fitters Who do Use Neutrino Data are wrong..

Experimental Studies of Nuclear Effects with Neutrinos: NON-EXISTENT

• F_2 / nucleon changes as a function of A. Measured in μ/e - A, **not in \nu - A**

◆ Good reason to consider nuclear effects are DIFFERENT in v - A.

- ▼ Presence of axial-vector current.
- Different nuclear effects for valance and sea --> different shadowing for xF₃ compared to F₂.

F2 Structure Function Ratios: NuTeV v-Iron

See NuFact08 Proceedings for Details

F₂ Structure Function Ratios: v-Iron

F_2 Structure Function Ratios: \overline{v} -Iron

F_2 Structure Function Ratios: \overline{v} -Iron

What's So Special about Neutrinos with respect to PDFs?

Recall neutrino's unique ability to taste particular flavors Using Leading order expressions (for isoscalar target):

$$F_{2}^{\overline{\nu}N}(x,Q^{2}) = x\left[u + \overline{u} + d + \overline{d} + 2\overline{s} + 2c\right]$$

$$F_{2}^{\nu}N(x,Q^{2}) = x\left[u + \overline{u} + d + \overline{d} + 2\overline{s} + 2\overline{c}\right]$$

$$xF_{3}^{\overline{\nu}N}(x,Q^{2}) = x\left[u + d - \overline{u} - \overline{d} - 2\overline{s} + 2c\right]$$

$$xF_{3}^{\nu}N(x,Q^{2}) = x\left[u + d - \overline{u} - \overline{d} + 2\overline{s} - 2\overline{c}\right]$$

How neutrinos help us constrain the Strange Sea

$$\nu N \to \mu^- c X \to \mu^- \mu^+ X$$

 $\bar{\nu} N \to \mu^+ c X \to \mu^+ \mu^- X$

Summary

- Neutrino scattering could be a powerful tool to determine PDFs particularly the strange and high-x valence quarks
- (d-u)/(d+u) reasonably constrained out to $x \approx 0.4$.
- $\kappa = (s + s) / (u + d)$ seems to be increasing with x.
- (s s) / (s + s) and heavy quarks need further clarification.
- The valence u-quark is reasonable out to x = 0.5, while the d-quark uncertainty blows up around x = 0.3.
- d/u at high-x still uncertain due to spread in deuteron correction.
- There is a serious need for new input to global QCD fits at HIGH X
- The Cleanest Way To Measure d/u: v + p Scattering
- UNKNOWN nuclear corrections in neutrino scattering are keeping the special abilities of neutrinos out of global fits for PDFs