Coherent pion production

J.E. Amaro ${ }^{1}$, E.Hernández ${ }^{2}$, J. Nieves 3, M. Valverde ${ }^{4}$, M.J. Vicente Vacas ${ }^{5}$
${ }^{1}$ Universidad de Granada, Spain
${ }^{2}$ Universidad de Salamanca, Spain
${ }^{3}$ IFIC, Valencia, Spain
${ }^{4}$ RCNP, Osaka, Japan
${ }^{5}$ Universidad de Valencia, Spain

[^0]
Plan of the talk

- Part I: Is it possible to constraint the $C_{5}^{A} N \rightarrow \Delta$ axial form factor from coherent production data?
- Part II: A Critique of the use of the Rein-Sehgal model for low energy neutrinos.

Delta Pole Term

The dominant contribution for weak pion production at intermediate energies is given by the Δ pole mechanism

$N \rightarrow \Delta$ weak current I

$$
\left\langle\Delta^{+} ; p_{\Delta}=p+q\right| j_{c c+}^{\mu}(0)|n ; p\rangle=\cos \theta_{C} \bar{u}_{\alpha}\left(\vec{p}_{\Delta}\right) \Gamma^{\alpha \mu}(p, q) u(\vec{p})
$$

$$
\begin{aligned}
& \Gamma^{\alpha \mu}(p, q) \\
&= {\left[\frac{C_{3}^{V}}{M}\left(g^{\alpha \mu} \phi-q^{\alpha} \gamma^{\mu}\right)+\frac{C_{4}^{V}}{M^{2}}\left(g^{\alpha \mu} q \cdot p_{\Delta}-q^{\alpha} p_{\Delta}^{\mu}\right)+\frac{C_{5}^{V}}{M^{2}}\left(g^{\alpha \mu} q \cdot p-q^{\alpha} p^{\mu}\right)+C_{6}^{V} g^{\mu \alpha}\right] \gamma_{5} } \\
&+\left[\frac{C_{3}^{A}}{M}\left(g^{\alpha \mu} \phi-q^{\alpha} \gamma^{\mu}\right)+\frac{C_{4}^{A}}{M^{2}}\left(g^{\alpha \mu} q \cdot p_{\Delta}-q^{\alpha} p_{\Delta}^{\mu}\right)+C_{5}^{A} g^{\alpha \mu}+\frac{C_{6}^{A}}{M^{2}} q^{\mu} q^{\alpha}\right]
\end{aligned}
$$

$N \rightarrow \Delta$ weak current II

- Vector form factors: determined from the analysis of photo and electroproduction (O. Lalakulich et al., Phys. Rev. D74, 014009 (2006))

$$
\begin{gathered}
C_{3}^{V}=\frac{2.13}{\left(1-q^{2} / M_{V}^{2}\right)^{2}} \cdot \frac{1}{1-\frac{q^{2}}{4 M_{V}^{2}}}, \quad C_{4}^{V}=\frac{-1.51}{\left(1-q^{2} / M_{V}^{2}\right)^{2}} \cdot \frac{1}{1-\frac{q^{2}}{4 M_{V}^{2}}}, \\
C_{5}^{V}=\frac{0.48}{\left(1-q^{2} / M_{V}^{2}\right)^{2}} \cdot \frac{1}{1-\frac{q^{2}}{0.776 M_{V}^{2}}}, \quad C_{6}^{V}=0(C V C), \quad M_{V}=0.84 \mathrm{GeV}
\end{gathered}
$$

- Axial form factors: use Adler model which assumes

$$
C_{4}^{A}\left(q^{2}\right)=-\frac{C_{5}^{A}\left(q^{2}\right)}{4}, \quad C_{3}^{A}\left(q^{2}\right)=0
$$

and take (E.A. Paschos et al., Phys. Rev. D69, 014013 (2004))

$$
C_{5}^{A}\left(q^{2}\right)=\frac{1.2}{\left(1-q^{2} / M_{A \Delta}^{2}\right)^{2}} \cdot \frac{1}{1-\frac{q^{2}}{3 M_{A \Delta}^{2}}}, \quad C_{6}^{A}\left(q^{2}\right)=C_{5}^{A}\left(q^{2}\right) \frac{M^{2}}{m_{\pi}^{2}-q^{2}}, \quad \text { with } M_{A \Delta}=1.05 \mathrm{GeV}
$$

where $C_{5}^{A}(0)=1.2$ from the off-diagonal GT relation

Background Terms

We shall also include background terms required by chiral symmetry. To that purpose we use a $\mathrm{SU}(2)$ non-linear σ model Lagrangian.

- No freedom in coupling constants
- We supplement it with well known form factors

$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$reaction \mathbf{I}

Flux averaged q^{2}-differential $\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$cross section $\int_{M+m_{\pi}}^{1.4 \mathrm{GeV}} d W \frac{d \bar{\nu}_{\nu_{\mu} \mu^{-}}}{d q^{2} d W}$

Results suggest a refit of C_{5}^{A}

$$
C_{5}^{A}(0)=0.867 \pm 0.075, \quad M_{A \Delta}=0.985 \pm 0.082 \mathrm{GeV}
$$

$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$reaction II

But mind BNL data [T. Kitagaki et al., Phys. Rev. D34, 2554 (1986)] for which $C_{5}^{A}(0)=1.2$ would be preferred

$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$reaction III

A different $C_{5}^{A}\left(q^{2}\right)$ parameterization is possible

Leitner et al. [Phys. Rev. C 79, 034601 (2009)] find $a=-0.25, b=0.04 \mathrm{GeV}^{2}$, $M_{A \Delta}=0.95 \mathrm{GeV}$ when only direct Δ is included

With background terms included one needs $a=-0.361, b=0.0167 \mathrm{GeV}^{2}$, $M_{A \Delta}=0.932 \mathrm{GeV}$

$C_{5}^{A}\left(q^{2}\right)$ comparison

$$
R_{A}^{2}=-\left.\frac{6}{C_{5}^{A}(0)} \frac{d C_{5}^{A}\left(q^{2}\right)}{d\left(-q^{2}\right)}\right|_{q^{2}=0}
$$

$$
C_{5}^{A}\left(q^{2}\right)=\frac{C_{5}^{A}(0)}{1-\frac{q^{2}}{M_{A \Delta}^{2}}} \cdot \frac{1}{1-\frac{q^{2}}{3 M_{A \Delta}^{2}}} \quad C_{5}^{A}\left(q^{2}\right)=\frac{1.2 \cdot\left(1-\frac{a q^{2}}{b-q^{2}}\right)}{1-\frac{q^{2}}{M_{A \Delta}^{2}}}
$$

$\frac{d \sigma}{d q^{2}}$ for coherent production

$\frac{d \sigma}{d \cos \theta_{\pi}}$ for coherent production

Shape is not affected!

$\frac{d \sigma}{d T_{\pi}}$ for coherent production

Shape is very slightly affected!

Total cross sections for coherent production

$$
\begin{aligned}
& C_{5}^{A}\left(q^{2}\right)=\frac{C_{5}^{A}(0)}{1-\frac{q^{2}}{M_{A \Delta}^{2}}} \cdot \frac{1}{1-\frac{q^{2}}{3 M_{A \Delta}^{2}}} \\
& C_{5}^{A}\left(q^{2}\right)=\frac{1.2 \cdot\left(1-\frac{a q^{2}}{b-q^{2}}\right)}{1-\frac{q^{2}}{M_{A \Delta}^{2}}}
\end{aligned}
$$

Deuteron effects

ANL and BNL data were measured in deuterium

- Deuteron effects were estimated by L. Alvarez-Ruso et al [Phys. Rev. C 59, 3386 (1999)] to be of the order of 8% for $E_{\nu}=1.6 \mathrm{GeV}$ even for $-q^{2}<0.1 \mathrm{GeV}$
- A recent fit to ANL data by Graczyk et al (arXiv:0907.1886) including deuteron effects and using a dipole parameterization for C_{5}^{A} finds $C_{5}^{A}(0)=1.13 \pm 0.15, M_{A \Delta}=0.936 \pm 0.077 \mathrm{GeV}$.

No background terms were included.

Conclusions part I

- Background terms have to be included in the analysis of the reaction at the nucleon level (We know they are not relevant for coherent production).
- If ANL data is correct then, either you reduce $C_{5}^{A}(0)$ or you have to live with a very large axial radius.
- If BNL data is correct you can have both $C_{5}^{A}(0)=1.2$, as given by the off-diagonal Goldberger-Treiman relation, and an axial radius of $0.7 \sim 0.9 \mathrm{fm}$.
- Deuteron effects could also play a role in decreasing the cross section and thus affecting the determination of C_{5}^{A}.
- Coherent reactions do not help much in obtaining information on C_{5}^{A}. Note however that recent MiniBooNE data is consistent with a dipole parameterization having $C_{5}^{A}(0) \approx 1.2$ and $M_{A \Delta} \approx 1 . \mathrm{GeV}$.
- New data at the nucleon level would be welcome.

PCAC models I

For NC processes

$$
\nu_{l}(k)+\mathcal{N}_{g s} \rightarrow \nu_{l}\left(k^{\prime}\right)+\mathcal{N}_{g s}+\pi^{0}\left(k_{\pi}\right) .
$$

$$
q=k-k^{\prime}, y=q^{0} / E, t=\left(q-k_{\pi}\right)^{2}
$$

$$
\frac{d \sigma}{d q^{2} d y d t d \phi_{\pi q}}=\frac{G^{2}}{16 \pi^{2}} E \kappa\left(-\frac{q^{2}}{|\vec{q}|^{2}}\right)\left(\frac{u^{2}}{2 \pi} \frac{d \sigma_{L}}{d t}+\frac{v^{2}}{2 \pi} \frac{d \sigma_{R}}{d t}+2 \frac{u v}{2 \pi} \frac{d \sigma_{S}}{d t}+\frac{d \mathcal{A}}{d t d \phi_{\pi q}}\right)
$$

where

$$
\kappa=q^{0}+\frac{q^{2}}{2 \mathcal{M}}, \quad u, v=\frac{E+E^{\prime} \pm|\vec{q}|}{2 E}, \quad \int \frac{d \mathcal{A}}{d t d \phi_{\pi q}} d \phi_{\pi q}=0
$$

$\sigma_{R, L, S}$ stand for cross sections for right, left and scalar polarized intermediate vector mesons. \mathcal{A} is not a proper cross section and it contains all the dependence on $\phi_{\pi q}$. In the $q^{2} \rightarrow 0$ limit only the σ_{S} term survives

PCAC models II

Equation

$$
\frac{d \sigma}{d q^{2} d y d t d \phi_{\pi q}}=\frac{G^{2}}{16 \pi^{2}} E \kappa\left(-\frac{q^{2}}{|\vec{q}|^{2}}\right)\left(\frac{u^{2}}{2 \pi} \frac{d \sigma_{L}}{d t}+\frac{v^{2}}{2 \pi} \frac{d \sigma_{R}}{d t}+2 \frac{u v}{2 \pi} \frac{d \sigma_{S}}{d t}+\frac{d \mathcal{A}}{d t d \phi_{\pi q}}\right),
$$

should be the starting point to evaluate differential cross sections with respect to θ_{π}, the angle made by the pion and the incoming neutrino. As shown in Hernandez et al. [Phys. Rev D 80,013003 (2009)]

$$
\cos \theta_{\pi}=\hat{k} \cdot \hat{k}_{\pi}=\frac{\left|\vec{k}^{\prime}\right|}{|\vec{q}|} \sin \theta^{\prime} \sin \theta_{\pi q} \cos \phi_{\pi q}+\frac{|\vec{k}|-\left|\vec{k}^{\prime}\right| \cos \theta^{\prime}}{|\vec{q}|} \cos \theta_{\pi q}
$$

The incoming neutrino energy and the variables q^{2} and y determine $\left|\overrightarrow{k^{\prime}}\right|,|\vec{q}|$ and θ^{\prime}, while, within the $E_{\pi}=q^{0}$ approximation, t fixes $\theta_{\pi q}\left[t=-\vec{q}^{2}-\vec{k}_{\pi}^{2}+2|\vec{q}|\left|\vec{k}_{\pi}\right| \cos \theta_{k_{\pi} q}\right]$.

Knowledge of $\phi_{\pi q}$ is needed unless $q^{2}=0 \Longrightarrow \theta^{\prime}=0$

PCAC models III

Integrating on $\phi_{\pi q}$ one arrives at (T. D. Lee and C. N. Yang, Phys. Rev. 126, 2239 (1962))

$$
\frac{d \sigma}{d q^{2} d y d t}=\frac{G^{2}}{16 \pi^{2}} E \kappa\left(-\frac{q^{2}}{|\vec{q}|^{2}}\right)\left(u^{2} \frac{d \sigma_{L}}{d t}+v^{2} \frac{d \sigma_{R}}{d t}+2 u v \frac{d \sigma_{S}}{d t}\right),
$$

This is the actual starting point for PCAC-based models
At $q^{2}=0$ only σ_{S} contributes and one has
$q^{2} \frac{d \sigma_{S}}{d t}=-\frac{\pi}{\kappa}\left(|\vec{q}|^{2} H_{00}+q^{0}|\vec{q}|\left(H_{0 z}+H_{z 0}\right)+\left(q^{0}\right)^{2} H_{z z}\right) \stackrel{q^{2}=0}{\equiv} q_{\mu} q_{\nu} H^{\mu \nu}=q_{\mu} \mathcal{J}_{N C}^{\mu}\left(q_{\nu} \mathcal{J}_{N C}^{\nu}\right)^{*}$
Since the vector NC is conserved we are left with the divergence of the axial part. Using PCAC

$$
\begin{aligned}
q_{\mu} \mathcal{J}_{N C}^{\mu}=\left\langle\mathcal{N}_{g s} \pi^{0}\left(k_{\pi}\right)\right| q_{\mu} A_{N C}^{\mu}\left|\mathcal{N}_{g s}\right\rangle_{q^{2}=0} & =-\left.2 \mathrm{i} f_{\pi} T\left(\mathcal{N}_{g s} \pi^{0}\left(k_{\pi}\right) \leftarrow \pi^{0}(q) \mathcal{N}_{g s}\right)\right|_{q^{2}=0} \\
\left.\Longrightarrow q^{2} \frac{d \sigma_{S}}{d t}\right|_{q^{2}=0} & =-\left.4 \frac{E_{\pi}}{\kappa} f_{\pi}^{2} \frac{d \sigma\left(\pi^{0} \mathcal{N}_{g s} \rightarrow \pi^{0} \mathcal{N}_{g s}\right)}{d t}\right|_{q^{2}=0}
\end{aligned}
$$

and then, neglecting the nucleus recoil $\left(q^{0}=E_{\pi}\right)$, one can further write

$$
\left.\frac{d \sigma}{d q^{2} d y d t}\right|_{q^{2}=0}=\left.\frac{G^{2} f_{\pi}^{2}}{2 \pi^{2}} \frac{E u v}{|\vec{q}|} \frac{d \sigma\left(\pi^{0} \mathcal{N}_{g s} \rightarrow \pi^{0} \mathcal{N}_{g s}\right)}{d t}\right|_{q^{2}=0, E_{\pi}=q^{0}}
$$

PCAC models IV. The Rein-Sehgal model

To go on-shell one eliminates the $q^{2}=0$ restriction on the $\pi \mathcal{N}$ cross section. Besides, for $q^{2} \neq 0$ a form factor is added. The final answer would be

$$
\frac{d \sigma}{d q^{2} d y d t}=\left.\frac{G^{2} f_{\pi}^{2}}{2 \pi^{2}} \frac{E u v}{|\vec{q}|} G_{A}^{2} \frac{d \sigma\left(\pi^{0} \mathcal{N}_{g s} \rightarrow \pi^{0} \mathcal{N}_{g s}\right)}{d t}\right|_{E_{\pi}=q^{0}}
$$

with

$$
G_{A}=1 /\left(1-q^{2} / m_{A}^{2}\right)
$$

This is the Berger-Sehgal model for NC coherent π^{0} production [Phys. Rev. D79,053003 (2009)].

In the Rein-Sehgal model [Nuc. Phys. B223, 29 (1983)] one further uses

$$
\begin{aligned}
\frac{E u v}{|\vec{q}|} & \rightarrow \frac{1-y}{y}\left(\text { exact for } q^{2}=0\right) \\
\frac{d \sigma\left(\pi^{0} \mathcal{N}_{g s} \rightarrow \pi^{0} \mathcal{N}_{g s}\right)}{d t} & =\left.\left|F_{A}(t)\right|^{2} F_{\mathrm{abs}} \frac{d \sigma\left(\pi^{0} N \rightarrow \pi^{0} N\right)}{d t}\right|_{t=0}
\end{aligned}
$$

with $F_{A}(t)=\int d^{3} \vec{r} e^{i\left(\vec{q}-\vec{k}_{\pi}\right) \cdot \vec{r}} \rho(\vec{r})$ the nucleus form factor and $F_{a b s}$ a t-independent absorption factor that takes into account the distortion of the final pion.

Improvements on the Rein-Sehgal model

One can easily eliminate two approximations made in the RS model
-

$$
\left|F_{A}(t)\right|^{2} F_{a b s} \longrightarrow\left|\int d^{3} \vec{r} e^{i\left(\vec{q}-\vec{k}_{\pi}\right) \cdot \vec{r}} \rho(\vec{r}) \Gamma(b, z)\right|^{2}
$$

where

$$
\Gamma(b, z)=\exp \left(-\frac{1}{2} \sigma_{\text {inel }} \int_{z}^{\infty} d z^{\prime} \rho\left(\sqrt{b^{2}+z^{\prime 2}}\right)\right)
$$

-

$$
\left.\frac{d \sigma\left(\pi^{0} N \rightarrow \pi^{0} N\right)}{d t}\right|_{t=0} \longrightarrow \frac{d \sigma_{n s p}\left(\pi^{0} N \rightarrow \pi^{0} N\right)}{d t}
$$

Besides

- We will also use $\frac{E u v}{|\vec{q}|}$ instead of $\frac{1-y}{y}$

Model comparison. No distortion I

Model comparison. No distortion II

Model comparison

Due to neglected terms $\sigma_{R, L}$ and $\mathcal{A}\left(\phi_{\pi q}\right)$

Conclusions part II

- It is not justified the use of the Rein-Sehgal model for low energy neutrinos.
- It is a good model for high energy neutrinos and heavier nuclei for which the nucleus form factor selects $t \approx 0 \Longrightarrow q^{2} \approx 0$.
- Eikonal approximation is not appropriate to evaluate pion distortion at low energies.
- It should become better at higher neutrino energies that imply higher pion energies.
- PCAC-based model predictions for angular distributions with respect to the incoming neutrino direction might not be reliable.

[^0]: - "Weak Pion Production off the Nucleon", Phys. Rev. D 76, 033005 (2007)
 E.Hernández, J. Nieves, M. Valverde
 - "Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies", Phys. Rev. D 79, 013002 (2009)
 J.E. Amaro, E.Hernández, J. Nieves, M. Valverde
 - "Neutrino Induced Coherent Pion Production off Nuclei and PCAC", Phys. Rev. D 80, 013003 (2009)
 E.Hernández, J. Nieves, M.J. Vicente-Vacas

