

Resolving Standard and Nonstandard CP Violation in Neutrino Oscillations

Renata Zukanovich Funchal

Universidade de São Paulo, Brazil

NuFact 09, IIT, Chicago, USA, July 24 (by A.M.Gago *et al.*, arXiv:0904.3360)

Motivations

- Neutrino Masses and Mixings seem to be well established
- Standard Model is extremely successful
- Natural to address Non-Standard Interactions (NSI) via higher dimensional operators
- If New Physics scale $\Lambda \sim 1$ TeV (LHC): $|\varepsilon_{\alpha\beta}| \sim (M_W/\Lambda)^2 \simeq 10^{-2}$ (dim-6) $|\varepsilon_{\alpha\beta}| \sim (M_W/\Lambda)^4 \simeq 10^{-4}$ (dim-8)
- Many constraints exist in the literature If $|\varepsilon_{\alpha\beta}| \lesssim 10^{-2} \rightarrow \nu$ -factory
- NSI can produce new sources of CP Violation (CPV)
- Can SI CPV be disentangled from NSI CPV?

[S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, JHEP 0303, 011 (2003); S. Antusch, J. P. Baumann and

E. Fernandez-Martinez, Nucl. Phys. B 810, 369 (2009); C. Biggio, M. Blennow and E. Fernandez-Martinez, JHEP

0903, 139 (2009)]

Renata Zukanovich Funchal

Scope of this Work

- NSI effects may exist in ν production, detection and propagation in matter
- NSI → many new/unknown parameters (very complex)
- We deal here with effects in propagation only
- We study a single NSI parameter $\varepsilon \equiv (|\varepsilon|, \phi)$ at a time
- We investigate the target region $10^{-4} \lesssim \varepsilon_{\alpha\beta} \lesssim 10^{-2}$
- We use a standard setup for the ν-factory experiment
- We investigate in this context:
 - the discovery potential to NSI
 - the discovery potential to NSI induced CPV
 - the impact of NSI on the discovery of standard CPV
 - the impact of NSI on the discovery of *ν* mass hierarchy?

Setup and Assumptions

- ν -Factory: 10²¹ useful μ -decays/year w/ $E_{\mu} = 50 \, \text{GeV}$
- 2 identical magnetized detectors of 50 kton (fidutial mass); at 3000 km and 7000 km
- 4 years ν + 4 years $\bar{\nu}$
- consider only golden channels: $\nu_e \rightarrow \nu_\mu$ and $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$
- fixed: $\sin^2 \theta_{12} = 0.31$, $\Delta m_{21}^2 = 8 \times 10^{-5} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.5$ and $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$
- vary: $\sin^2 2\theta_{13}$, δ , mass hierarchy, $\varepsilon = (|\varepsilon|, \phi)$
- detector efficiency 70%; $\sigma_{\rm sys} = 2.5\%$
- background fraction (NC + right sign μ) 5 × 10⁻⁶; $\sigma_{\rm BG} = 20\%$

[A. Bandyopadhyay et al. (ISS Physics Working Group), arXiv:0710.4947; T. Abe et al. (ISS Physics Working Group), arXiv:0712.4129]

Renata Zukanovich Funchal

$$\chi^{2} \equiv \min_{\theta_{13},\delta,\varepsilon} \sum_{i=1}^{3} \sum_{j=1}^{2} \sum_{k=1}^{2} \frac{\left[N_{i,j,k}^{\text{obs}} - N_{i,j,k}^{\text{theo}}(\theta_{13},\delta,\varepsilon,\text{hierarchy})\right]^{2}}{N_{i,j,k}^{\text{obs}} + (\sigma_{\text{sys}}N_{i,j,k}^{\text{obs}})^{2} + (\sigma_{\text{BG}}N_{i,j,k}^{\text{BG}})^{2}}$$

- 3 *E_ν* bins: 4-8 GeV, 8-20 GeV and 20-50 GeV (*ν*)
 4-15 GeV, 15-25 GeV and 25-50 GeV (*ν̄*)
- 2 baselines: 3000 km, 7000 km
- 2 mode: neutrinos, antineutrinos

[N. Cipriano, H. Minakata, H. Nunokawa, S. Uchinami and RZF, JHEP 0712, 002 (2007)]

< □ > < □ >

Neutrino Evolution in Matter with NSI

Consider

$$\mathcal{L}_{\mathsf{eff}}^{\mathsf{NSI}} = -2\sqrt{2}\,\varepsilon_{\alpha\beta}^{\mathit{fP}} \mathcal{G}_{\mathit{F}}(\overline{\nu}_{\alpha}\gamma_{\mu}\mathcal{P}_{\mathit{L}}\nu_{\beta})\,(\overline{\mathit{f}}\gamma^{\mu}\mathcal{P}\,\mathit{f}) \quad \alpha,\beta = \mathit{e},\mu,\tau$$

$$P = P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$$

$$i\frac{d}{dt}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \frac{1}{2E_{\nu}}\left[U\begin{pmatrix}0&0&0&0\\0&\Delta m_{21}^{2}&0\\0&0&\Delta m_{31}^{2}\end{pmatrix} U^{\dagger} + a\begin{pmatrix}1+\varepsilon_{ee}&\varepsilon_{e\mu}&\varepsilon_{e\tau}\\\varepsilon_{e\mu}^{*}&\varepsilon_{\mu\mu}&\varepsilon_{\mu\tau}\\\varepsilon_{e\tau}^{*}&\varepsilon_{\mu\tau}^{*}&\varepsilon_{\tau\tau}\end{pmatrix} \right]\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}$$

where: $\varepsilon_{\alpha\beta} \equiv \sum_{f,P} \frac{n_{f}}{n_{e}} \varepsilon_{\alpha\beta}^{fP} \qquad a = 2\sqrt{2} G_{F} n_{e} E_{\nu}$

Golden Channel Probability with NSI

If
$$\epsilon \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sim \sin \theta_{13} \sim |\varepsilon_{e\alpha}| << \frac{a}{\Delta m_{31}^2} \sim 1$$
 then
Perturbative Expansion leads to

$$\begin{aligned} P(\nu_{e} \to \nu_{\mu}; \varepsilon_{e\mu}, \varepsilon_{e\tau}) \\ &= 4 \left| c_{12} s_{12} c_{23} \frac{\Delta m_{21}^2}{a} \sin\left(\frac{aL}{4E_{\nu}}\right) e^{-i\Delta_{31}} + s_{13} s_{23} e^{-i\delta} \frac{\Delta m_{31}^2}{a} \left(\frac{a}{\Delta m_{31}^2 - a}\right) \sin\left(\frac{\Delta m_{31}^2 - a}{4E_{\nu}}L\right) \right. \\ &+ \varepsilon_{e\mu} \left[c_{23}^2 \sin\left(\frac{aL}{4E_{\nu}}\right) e^{-i\Delta_{31}} + s_{23}^2 \left(\frac{a}{\Delta m_{31}^2 - a}\right) \sin\left(\frac{\Delta m_{31}^2 - a}{4E_{\nu}}L\right) \right] \\ &- c_{23} s_{23} \varepsilon_{e\tau} \left[\sin\left(\frac{aL}{4E_{\nu}}\right) e^{-i\Delta_{31}} - \left(\frac{a}{\Delta m_{31}^2 - a}\right) \sin\left(\frac{\Delta m_{31}^2 - a}{4E_{\nu}}L\right) \right] \right|^2 \end{aligned}$$

where $c_{ij} \equiv \cos \theta_{ij}$ $s_{ij} \equiv \sin \theta_{ij}$ $\Delta_{31} \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}}$

[T. Kikuchi, H. Minakata and S. Uchinami, JHEP 0903, 114 (2009)]

Renata Zukanovich Funchal

Behavior at 3000 km

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

Behavior at 3000 km

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

Behavior at 7000 km

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

 $arepsilon_{\mathbf{e}\mu} = ert arepsilon_{\mathbf{e}\mu} ert \, \mathbf{e}^{\mathbf{i}\phi_{\mathbf{e}\mu}}$

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing

 $\chi^2_{\min}(\varepsilon = 0) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9)$ (1 DOF)

Resolving Standard and Nonstandard CP in Oscillations

 $arepsilon_{\mathbf{e}\mu} = ert arepsilon_{\mathbf{e}\mu} ert \, \mathbf{e}^{\mathbf{i}\phi_{\mathbf{e}\mu}}$

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing

 $\chi^2_{\min}(\varepsilon = 0) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9) \text{ (1 DOF)}$

← □ ▷ < 금 ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ○ ○</p>
Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing

 $arepsilon_{\mathbf{e} au} = ert arepsilon_{\mathbf{e} au} ert \, \mathbf{e}^{\mathbf{i}\phi_{\mathbf{e} au}}$

 $\chi^2_{\min}(\varepsilon = 0) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9)$ (1 DOF)

← □ ▷ < 큔 ▷ < 큰 ▷ < 큰 ▷ < 큰 ▷ < 큰 ▷ < 큰 ○ ○</p>
Resolving Standard and Nonstandard CP in Oscillations

 $arepsilon_{\mathbf{e} au} = |arepsilon_{\mathbf{e} au}| \, \mathbf{e}^{\mathbf{i}\phi_{\mathbf{e} au}}$

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing

 $\chi^2_{\min}(\varepsilon = 0) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9) \text{ (1 DOF)}$

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\phi_{e\mu} \neq 0, \pi$

$\chi^2_{\min}(\phi = 0 \text{ or } \pi) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9) \text{ (1 DOF)}$

Renata Zukanovich Funchal

NuFact09

< □ > < 급 > < 클 > < 클 > < 클 > < 클 > < 클 > < 클 > ○ ○
Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\phi_{e\mu} \neq 0, \pi$

$\chi^2_{\min}(\phi = 0 \text{ or } \pi) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9)$ (1 DOF)

← □ ▷ < 금 ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ○ ○</p>
Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\phi_{e\tau} \neq 0, \pi$

$\chi^2_{\min}(\phi = 0 \text{ or } \pi) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9) \text{ (1 DOF)}$

< 17 > Resolving Standard and Nonstandard CP in Oscillations

 $\bullet \Rightarrow \bullet$

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\phi_{e\tau} \neq 0, \pi$

$\chi^2_{\min}(\phi = 0 \text{ or } \pi) - \chi^2_{\min}(\text{true value of } \varepsilon \text{ and } \phi) > 4(9) \text{ (1 DOF)}$

← □ ▷ < 금 ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ ○ Ξ ○ ○</p>
Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\delta \neq 0, \pi$

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\delta \neq 0, \pi$

$\chi^2_{min}(\delta = 0 \text{ or } \pi) - \chi^2_{min}(\text{true value of } \delta) > 4(9)$ (1 DOF)

Renata Zukanovich Funchal

NuFact09

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing $\delta \neq 0, \pi$

$\chi^2_{min}(\delta = 0 \text{ or } \pi) - \chi^2_{min}(\text{true value of } \delta) > 4(9)$ (1 DOF)

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

< □ > < □ > < □ > < □ > < □ >

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing the Neutrino Mass Hierarchy

$\chi^2_{min}(\text{opposite hierarchy}) - \chi^2_{min}(\text{input hierarchy}) > 4(9)$ (1 DOF)

3000+7000 km \rightarrow hierarchy solved in the whole plane

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing the Neutrino Mass Hierarchy

χ^2_{min} (opposite hierarchy) – χ^2_{min} (input hierarchy) > 4(9) (1 DOF)

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Revealing the Neutrino Mass Hierarchy

Renata Zukanovich Funchal

NuFact09

Resolving Standard and Nonstandard CP in Oscillations

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Conclusions

- a single detector at 3000 km can discover NSI down to $|\varepsilon_{e\mu}| \sim 10^{-3} 10^{-4}$
- synergy between detectors leads to similar sensitivity in the |ε_{eτ}| system

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Conclusions

- a single detector at 3000 km can discover NSI down to $|\varepsilon_{e\mu}| \sim 10^{-3} 10^{-4}$
- synergy between detectors leads to similar sensitivity in the $|\varepsilon_{e\tau}|$ system
- if $0.1 \leq \phi_{e\mu}/\pi \leq 0.9$ or $1.1 \leq \phi_{e\mu}/\pi \leq 1.9$ non-standard CPV can be discovered down to $|\varepsilon_{e\mu}| \sim (2-10) \times 10^{-4}$ (depending on sin² $2\theta_{13}$ and δ) at 3 σ CL (for both mass hierarchies) here 2 detectors help
- if $0.1 \leq \phi_{e\tau}/\pi \leq 0.9$ or $1.1 \leq \phi_{e\tau}/\pi \leq 1.9$ non-standard CPV can be discovered down to $|\varepsilon_{e\tau}| \sim (5-20) \times 10^{-4}$ at 3 σ CL (for both mass hierarchies) here synergy of 2 detectors is crucial

Conclusions

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

 NSI will not aggravate much the potential discovery of standard CPV. For the ε_{eτ} system the 7000 km detector is important

NSI Discovery Reach Non-Standard CPV Standard CPV Neutrino Mass Hierarchy

Conclusions

- NSI will not aggravate much the potential discovery of standard CPV. For the ε_{eτ} system the 7000 km detector is important
- For $\varepsilon_{e\mu} \neq 0$ with the help of the far detector can distinguish the mass hierarchy for all values of δ if $\sin^2 2\theta_{13} \gtrsim 10^{-4}$
- For ε_{eτ} ≠ 0 the power of the combination of 2 detectors allows the mass hierarchy to be determined in almost the whole parameter space of δ and θ₁₃ considered in this work (except for a small region if |ε_{eτ}| is rather large)

< A > < 3