

Neutrino factory optimization for non-standard interactions

Toshihiko Ota

J. Kopp, TO, and W. Winter Phys. Rev. **D78** (2008) 053007

B. Gavela, D. Hernandez, TO, and W. Winter Phys. Rev. **D79** (2009) 013007

Institut für Theoretische Physik und Astrophysik Universität Würzburg

T. Ota (Uni Würzburg)

Nufact opt for NSI

Within the current precision — Leading Order (LO)

Oscillation probabilities for $u_{\mu}
ightarrow
u_{\alpha}$ (@atmospheric region $\Delta m^2_{31}L/E \sim 1$)

$$\underbrace{P_{\nu_{\mu} \to \nu_{e}}}_{0} + P_{\nu_{\mu} \to \nu_{\mu}} + \underbrace{P_{\nu_{\mu} \to \nu_{\tau}}}_{1 - P_{\nu_{\mu} \to \nu_{\mu}}} = 1 \qquad (\text{unitarity})$$

Within the current precision — Leading Order (LO)

Oscillation probabilities for $u_{\mu} \rightarrow
u_{\alpha}$ (@atmospheric region $\Delta m^2_{31}L/E \sim 1$)

$$\underbrace{P_{\nu_{\mu} \to \nu_{e}}}_{0} + P_{\nu_{\mu} \to \nu_{\mu}} + \underbrace{P_{\nu_{\mu} \to \nu_{\tau}}}_{1 - P_{\nu_{\mu} \to \nu_{\mu}}} = 1 \qquad (\text{unitarity})$$

Future experiments are sensitive to the Next LO

$$P_{\nu_{\mu} \to \nu_{e}} = 0$$
 Leading Order

Within the current precision — Leading Order (LO)

Oscillation probabilities for $u_{\mu}
ightarrow
u_{\alpha}$ (@atmospheric region $\Delta m^2_{31}L/E \sim 1$)

$$\underbrace{P_{\nu_{\mu} \to \nu_{e}}}_{0} + P_{\nu_{\mu} \to \nu_{\mu}} + \underbrace{P_{\nu_{\mu} \to \nu_{\tau}}}_{1 - P_{\nu_{\mu} \to \nu_{\mu}}} = 1 \qquad (\text{unitarity})$$

Future experiments are sensitive to the Next LO

$$\begin{split} P_{\nu_{\mu} \rightarrow \nu_{e}} &= 0 \quad \boxed{\text{Leading Order}} \\ &+ \mathcal{O}(s_{13}^{2}) \quad \boxed{\text{Mass-Texture, LFV Prediction...}} \\ &+ \mathcal{O}(s_{13}\Delta m_{21}^{2}/\Delta m_{31}^{2}) \quad \boxed{\text{CP violation (Leptogenesis)...}} \end{split}$$

Within the current precision — Leading Order (LO)

Oscillation probabilities for $u_{\mu}
ightarrow
u_{lpha}$ (@atmospheric region $\Delta m^2_{31}L/E \sim 1$)

$$\underbrace{P_{\nu_{\mu} \to \nu_{e}}}_{0} + P_{\nu_{\mu} \to \nu_{\mu}} + \underbrace{P_{\nu_{\mu} \to \nu_{\tau}}}_{1 - P_{\nu_{\mu} \to \nu_{\mu}}} = 1 \qquad (\text{unitarity})$$

Future experiments are sensitive to the Next LO

$$\begin{split} P_{\nu_{\mu} \rightarrow \nu_{e}} &= 0 & \mbox{Leading Order} \\ &+ \mathcal{O}(s_{13}^{2}) & \mbox{Mass-Texture, LFV Prediction...} \\ &+ \mathcal{O}(s_{13}\Delta m_{21}^{2}/\Delta m_{31}^{2}) & \mbox{CP violation (Leptogenesis)...} \\ &+ & \mbox{Direct evidence of New Physics} \end{split}$$

Outline

Introduction

- 2 NSI search in a neutrino factory
 - Neutrino factory for standard oscillation parameters
 - Neutrino factory for NSI
 - Correlations between NSIs
 - Silver detector for NSI
 - Optimization of Golden detector baselines
- Model building for large NSI [short comment]

4 Summary

Introduction

Outline

- NSI search in a neutrino factory
 - Neutrino factory for standard oscillation parameters
 - Neutrino factory for NSI
 - Correlations between NSIs
 - Silver detector for NSI
 - Optimization of Golden detector baselines
- 3 Model building for large NSI [short comment]

4 Summary

Introduction — NSI in oscillation

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

Introduction — NSI in oscillation

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

With NSI in source and detection

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \boldsymbol{\nu}_{\beta}^{\boldsymbol{d}} | \mathrm{e}^{-\mathrm{i}HL} | \boldsymbol{\nu}_{\alpha}^{\boldsymbol{s}} \rangle \right|^{2}$$

• CC type NSI — flavour mixture states at source and detection Grossman PLB359 (1995) 141.

$$\begin{split} |\nu_{\alpha}^{s}\rangle = &|\nu_{\alpha}\rangle + \sum_{\gamma=e,\mu,\tau} \epsilon_{\alpha\gamma}^{s} |\nu_{\gamma}\rangle, \qquad \text{e.g., } \pi^{+} \xrightarrow{\epsilon_{\mu e}} \mu^{+}\nu_{e} \\ \langle\nu_{\alpha}^{d}| = &\langle\nu_{\alpha}| + \sum_{\gamma} \epsilon_{\gamma\alpha}^{d} \langle\nu_{\gamma}|, \qquad \text{e.g., } \nu_{\tau}N \xrightarrow{\epsilon_{\tau e}^{d}} e^{-}X \end{split}$$

 $\gamma = e, \mu, \tau$

Introduction — NSI in oscillation

 NSI — Exotic interactions with neutrinos which are parametrized as four-Fermi interactions:

Standard oscillation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}HL} | \nu_{\alpha} \rangle \right|^{2}$$

With NSI in propagation

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \langle \nu_{\beta} | \mathrm{e}^{-\mathrm{i}(H + V_{\mathrm{NSI}})L} | \nu_{\alpha} \rangle \right|^{2}$$

NC type NSI — extra matter effect in propagation
e.g., Wolfenstein PRD17 (1978) 2369. Valle PLB199 (1987) 432. Guzzo Masiero Petcov PLB260 (1991) 154.
Roulet PRD44 (1991) R935.

$$(V_{\rm NSI})_{\beta\alpha} = \sqrt{2}G_F N_e \begin{pmatrix} \epsilon^m_{ee} & \epsilon^m_{e\mu} & \epsilon^m_{e\tau} \\ \epsilon^m_{e\mu} & \epsilon^m_{\mu\mu} & \epsilon^m_{\mu\tau} \\ \epsilon^m_{e\tau} & \epsilon^m_{\mu\tau} & \epsilon^m_{\tau\tau} \end{pmatrix}, \qquad \text{e.g., } \begin{matrix} \nu_e & \frac{\epsilon^m_{e\tau}}{\epsilon^m_{e\tau}} & \nu_\tau \\ \text{in propagation} \end{matrix}$$

• We will focus on NSI in the propagation in this talk.

T. Ota (Uni Würzburg)

Nufact opt for NSI

Outline

Introduction

- 2 NSI search in a neutrino factory
 - Neutrino factory for standard oscillation parameters
 - Neutrino factory for NSI
 - Correlations between NSIs
 - Silver detector for NSI
 - Optimization of Golden detector baselines

3 Model building for large NSI [short comment]

4 Summary

NSI search in a neutrino factory Neutrino factory for standard oscillation parameters

Oscillation experiments in next generation

Central theme of this talk

What is the optimal setup (E_{μ} , L, and type of detectors) for measuring θ_{13} , δ_{CP} , sign[Δm_{31}^2], and NSI parameters $\epsilon_{\alpha\beta}^m$?

T. Ota (Uni Würzburg)

Neutrino factory for standard oscillation parameters

Kopp O Winter

Optimization for standard oscillation parameters

Er including d

Nufact opt for NSI

For θ_{13} , $\delta_{\rm CP}$, and sign[Δm_{31}^2]

Optimum at 4000+7500 km Optimization does not change in presence of NSI

- The qualitatively different observations (matter osc. max and magic baseline) help resolve the parameter degeneracies.
- If we have two Golden dets at 4000km+7500km, Silver det (included in IDS-NF) does not contribute improving sensitivities.

Relevant NSI in each channel e.g., Kikuchi Minakata Uchinami JHEP0903 (2009) 114, Kopp Lindner O Sato PRD77 (2008) 013007

• Appearance channel: $\epsilon^m_{e\mu}$ and $\epsilon^m_{e au}$

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

On bounds on e: Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

Central questions for NSI search

Correlation between NSIs and its resolution

 Relevant NSI in each channel

 e.g., Kikuchi Minakata Uchinami JHEP0903 (2009) 114, Kopp Lindner O Sato PRD77 (2008) 013007

 • Appearance channel: $\epsilon_{e\mu}^m$ and $\epsilon_{e\tau}^m$

 • Disapp. channel: $\epsilon_{\mu\tau}^m$, $\epsilon_{\mu\mu}^m$, and $\epsilon_{\tau\tau}^m$

 • Silver channel: $\epsilon_{e\tau}^m$ and $\epsilon_{e\mu}^m$

 • Tau-associated NSI $\epsilon_{e\tau}^m$ $\epsilon_{\mu\tau}^m$, and $\epsilon_{\tau\tau}^m$

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

Central questions for NSI search

- Correlation between NSIs and its resolution
- Necessity of Silver channel

Relevant NSI in each channel e.g., Kikuchi Minakata Uchinami JHEP0903 (2009) 114, Kopp Lindner O Sato PRD77 (2008) 013007 • Appearance channel: $\epsilon^m_{e\mu}$ and $\epsilon^m_{e\tau}$ • Disapp. channel: $\epsilon^m_{\mu\tau}$, $\epsilon^m_{\mu\mu}$, and $\epsilon^m_{\tau\tau}$ MIND (Golden) det • Silver channel: $\epsilon^m_{e\tau}$ and $\epsilon^m_{e\mu}$ — ECC (Silver) det

Tau-associated NSI $\epsilon^m_{e\tau}$ $\epsilon^m_{\mu\tau}$, and $\epsilon^m_{\tau\tau}$

On bounds on ϵ : Biggio Blennow Fernandez-Martinez JHEP0903 (2009) 139 and arXiv:0907.0097

Central questions for NSI search

- Correlation between NSIs and its resolution
- Necessity of Silver channel

We address them with full simulations powered by GLoBES

GLoBES Website: http://www.mpi-hd.mpg.de/lin/globes/

Neutrino factory for NSI

Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal JHEP 0712 (2007) 002. Kopp O Winter

Correlation between $\epsilon^m_{e\tau}$ and $\epsilon^m_{\tau\tau}$

Neutrino factory for NSI

Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal JHEP 0712 (2007) 002. Kopp O Winter

Correlation between $\epsilon^m_{e\tau}$ and $\epsilon^m_{\tau\tau}$

T. Ota (Uni Würzburg)

Nufact opt for NSI

Neutrino factory for NSI

Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal JHEP 0712 (2007) 002. Kopp O Winter

Correlation between $\epsilon^m_{e\tau}$ and $\epsilon^m_{\tau\tau}$

T. Ota (Uni Würzburg)

Nufact opt for NSI

Neutrino factory for NSI

Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal JHEP 0712 (2007) 002. Kopp O Winter

Correlation between $\epsilon^m_{e\tau}$ and $\epsilon^m_{\tau\tau}$

T. Ota (Uni Würzburg)

Nufact opt for NSI

Neutrino factory for NSI

Ribeiro Minakata Nunokawa Uchinami Zukanovich-Funchal JHEP 0712 (2007) 002. Kopp O Winter

Correlation between $\epsilon^m_{e\tau}$ and $\epsilon^m_{\tau\tau}$

Kopp O Winter

Optimization of silver detector baseline

• Fix two Golden dets at L = 4000 + 7500 km.

Kopp O Winter

Optimization of silver detector baseline

• Fix two Golden dets at L = 4000 + 7500 km.

- Silver detector only relevant $L \sim 4000$ km and $E_{\mu} \gg 25$ GeV.
 - \rightarrow Fix Silver det at $L=4000~{\rm km}\ldots$

T. Ota (Uni Würzburg)

Nufact opt for NSI

Neutrino factory for NSI

Kopp O Winter Opt<u>imization of muon en</u>ergy 10^{-1} 10^{-1} $\sin^2 2\theta_{13}^{true} = 0.001$ $\sin^2 2\theta_{13}^{\text{true}} = 0.01$ $\delta_{\rm CP}^{\rm true}=3\pi/2$ $\delta_{CP}^{true} = 0$ $|\epsilon_{\tau\tau}^m|$ ϵ^{m} Sensitivity to $|\epsilon_{\alpha\beta}^{m}|$ Sensitivity to $|\epsilon_{\alpha\beta}^{m}|$ $|\epsilon_{\mu\tau}^m|$ 10^{-2} 10^{-2} $|\epsilon_{e\tau}^m|$ $|\epsilon_{e\tau}^m|$ Improvement Silver detector @ 4000 km Improvement by HZ-Silver* detector @ 4000 km IDS-NF -SO GLoBES 2008 GLoBES 2008 10 10 20 20 40 60 80 100 40 60 80 100 E_{μ} [GeV] E_{μ} [GeV]

• Fix Goldens at L = 4000 + 7500 km and Silver at L = 4000 km

Neutrino factory for NSI

Kopp O Winter Optimization of muon energy 10^{-1} 10^{-1} $\sin^2 2\theta_{13}^{true} = 0.001$ $\sin^2 2\theta_{13}^{\text{true}} = 0.01$ $\delta_{CP}^{true} = 3\pi/2$ $\delta_{CP}^{true} = 0$ $|\epsilon_{\tau\tau}^m|$ ϵ^m Sensitivity to $|\epsilon_{\alpha\beta}^{m}|$ Sensitivity to $|\epsilon_{\alpha\beta}^{m}|$ $\epsilon_{\mu\tau}^m$ $|\epsilon_{\mu\tau}^m|$ 10^{-2} 10^{-2} $|\epsilon_{e\tau}^m|$ Em Silver detector @ Improvement by Ż Ż Silver* detector @ 4000 km ġ à GLoBES 2008 GLoBES 2008 10 10 20 40 60 80 100 20 40 60 80 100 E_{μ} [GeV] E_{μ} [GeV]

• Fix Goldens at L = 4000 + 7500 km and Silver at L = 4000 km

• Silver detector only useful at $E_{\mu} \gg 50$ GeV.

 \rightarrow Fix $E_{\mu}=25~{\rm GeV}$ (IDS-NF baseline), omit Silver detector...

- For $\epsilon_{e\tau}^m$: L = 4000 km+7500 km is almost optimal.
- For $\epsilon^m_{\mu\tau}$ and $\epsilon^m_{\tau\tau}$: longer baseline is preferred.

Sensitivity is dominated by the longer baseline, and it is simply proportional to the baseline length.

Note For NSI search, higher E_{μ} (and longer *L*) is preferred.

Outline

1 Introduction

- 2 NSI search in a neutrino factory
 - Neutrino factory for standard oscillation parameters
 - Neutrino factory for NSI
 - Correlations between NSIs
 - Silver detector for NSI
 - Optimization of Golden detector baselines

Model building for large NSI [short comment]

4 Summary

Model building for large NSI [short comment]

NSI from Dim.6 and Dim.8

Dim.6 op — 4-Fermi

$$\begin{array}{c} \nu_{\alpha} \xrightarrow{\epsilon_{\alpha\beta}} \nu_{\beta} \text{ is parametrized as 4-Fermi interaction} \\ & \frac{1}{\Lambda^{2}} [\bar{\nu}_{\beta} \gamma^{\rho} \mathbf{P}_{L} \nu_{\alpha}] [\bar{f} \gamma_{\rho} \mathbf{P}_{L} f] \end{array}$$

Model building for large NSI [short comment]

NSI from Dim.6 and Dim.8

Dim.6 op — 4-Fermi

$$\nu_{\alpha} \xrightarrow{\epsilon_{\alpha\beta}^{}} \nu_{\beta} \text{ is parametrized as 4-Fermi interaction}
 $\frac{1}{\Lambda^{2}} [\bar{L}_{\beta} \gamma^{\rho} L_{\alpha}] [\bar{f} \gamma_{\rho} P_{L} f]$$$

NSI from Dim.6 and Dim.8

Dim.6 op — 4-Fermi

$$\begin{split} \nu_{\alpha} & \xrightarrow{\epsilon_{\alpha\beta}^{m}} \nu_{\beta} \text{ is parametrized as 4-Fermi interaction} \\ & \frac{1}{\Lambda^{2}} [\bar{L}_{\beta} \gamma^{\rho} L_{\alpha}] [\bar{f} \gamma_{\rho} P_{L} f] \\ & = \frac{1}{\Lambda^{2}} \left[[\bar{\nu}_{\beta} \gamma^{\rho} P_{L} \nu_{\alpha}] + [\bar{\ell}_{\beta} \gamma^{\rho} P_{L} \ell_{\alpha}] \right] [\bar{f} \gamma_{\rho} P_{L} f] \\ & \text{includes also SU(2) counter process } \text{Exception } [\overline{L^{c}} L] [\overline{L^{c}} L] \end{split}$$

NSI from Dim.6 and Dim.8

Dim.6 op — 4-Fermi

$$\begin{split} \nu_{\alpha} & \xrightarrow{\epsilon_{\alpha\beta}^{m}} \nu_{\beta} \text{ is parametrized as 4-Fermi interaction} \\ & \frac{1}{\Lambda^{2}} [\bar{L}_{\beta} \gamma^{\rho} L_{\alpha}] [\bar{f} \gamma_{\rho} P_{L} f] \\ & = & \frac{1}{\Lambda^{2}} \left[[\bar{\nu}_{\beta} \gamma^{\rho} P_{L} \nu_{\alpha}] + [\bar{\ell}_{\beta} \gamma^{\rho} P_{L} \ell_{\alpha}] \right] [\bar{f} \gamma_{\rho} P_{L} f] \end{split}$$

includes also SU(2) counter process $Exception [\overline{L^c}L][\overline{L^c}L]$

Dim.8 op — 4-Fermi and 2-Higgs

SM gauge invariant form

$$\frac{1}{\Lambda^4} [(\bar{L}_{\beta} H) \gamma^{\rho} (H^{\dagger} L_{\alpha})] [\bar{f} \gamma_{\rho} \mathcal{P}_L f]$$

T. Ota (Uni Würzburg)

NSI from Dim.6 and Dim.8

Dim.6 op — 4-Fermi

$$\begin{split} \nu_{\alpha} & \xrightarrow{\epsilon_{\alpha\beta}^{m}} \nu_{\beta} \text{ is parametrized as 4-Fermi interaction} \\ & \frac{1}{\Lambda^{2}} [\bar{L}_{\beta} \gamma^{\rho} L_{\alpha}] [\bar{f} \gamma_{\rho} P_{L} f] \\ & = & \frac{1}{\Lambda^{2}} \left[[\bar{\nu}_{\beta} \gamma^{\rho} P_{L} \nu_{\alpha}] + [\bar{\ell}_{\beta} \gamma^{\rho} P_{L} \ell_{\alpha}] \right] [\bar{f} \gamma_{\rho} P_{L} f] \end{split}$$

includes also SU(2) counter process $Exception [\overline{L^c}L][\overline{L^c}L]$

Dim.8 op — 4-Fermi and 2-Higgs

SM gauge invariant form and after EWSB

$$\begin{split} & \frac{1}{\Lambda^4} [(\bar{L}_{\beta} H) \gamma^{\rho} (H^{\dagger} L_{\alpha})] [\bar{f} \gamma_{\rho} \mathbf{P}_L f] \\ = & \frac{v^2}{2\Lambda^4} [\bar{\nu}_{\beta} \gamma^{\rho} \nu_{\alpha}] [\bar{f} \gamma_{\rho} \mathbf{P}_L f] + (\text{Higgs ints.}) \end{split}$$

 $SU(2)\ {\rm relation}$ is broken with Higgs vev.

T. Ota (Uni Würzburg)

Model building for large NSI [short comment]

Gavela Hernandez O Winter

NSI from Dim.8

NSI from Dim.6 (4-Fermi) are strongly constrained No SU(2) violation Bergmann Grossman Pierce PRD61 (2000) 053005

NSI from Dim.8 (4-Fermi+2Higgs) have some chance SU(2) relation is broken with Higgs yey

Berezhiani Rossi PL**B535** (2002) 207, Davidson Pena-Garay Rius Santamaria JHEP**0303** (2003) 011, Biggio Blennow Fernandez-Martinez JHEP**0903** (2009) 139 and arXiv:0907.0097

NSI from a Dim.8 diagram is always constrained

Antusch Baumann Fernandez-Martinez NPB810 (2009) 369

 Combination of diagrams can help to obtain large NSI avoiding constraints.

_					
#	Dim. eight operator	C_{LEH}^{1}	C_{LEH}^3	\mathcal{O}_{NSI} ?	Mediators
Combination $\overline{L}L$					
1	$(\bar{L}\gamma^{\rho}L)(\bar{E}\gamma_{\rho}E)(H^{\dagger}H)$	1			1_{0}^{v}
2	$(\bar{L}\gamma^{\rho}L)(\bar{E}H^{\dagger})(\gamma_{\rho})(HE)$	1			$1_0^v + 2_{-3/2}^{L/R}$
3	$(\bar{L}\gamma^{\rho}L)(\bar{E}H^{T})(\gamma_{\rho})(H^{*}E)$	1			$1_0^v + 2_{-1/2}^{L/\hat{R}}$
4	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{E}\gamma_{\rho}E)(H^{\dagger}\vec{\tau}H)$		1		$3_0^v + 1_0^v$
5	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{E}H^{\dagger})(\gamma_{\rho}\vec{\tau})(HE)$		1		$3_0^v + 2_{-3/2}^{L/R}$
6	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{E}H^{T})(\gamma_{\rho}\vec{\tau})(H^{*}E)$		1		$3_0^v + 2_{-1/2}^{L/\dot{R}}$
Combination $\bar{E}L$					
7	$(\overline{L}E)(\overline{E}L)(H^{\dagger}H)$	-1/2			$2^{s}_{\pm 1/2}$
8	$(\overline{L}E)(\overline{\tau})(\overline{E}L)(H^{\dagger}\overline{\tau}H)$		-1/2		$2^{s}_{\pm 1/2}$
9	$(\overline{L}H)(H^{\dagger}E)(\overline{E}L)$	-1/4	-1/4	~	$2_{\pm 1/2}^{s} + 1_{0}^{R} + 2_{-1/2}^{L/R}$
10	$(\bar{L}\vec{\tau}H)(H^{\dagger}E)(\vec{\tau})(\bar{E}L)$	-3/4	1/4		$2_{\pm 1/2}^{s} + 3_{0}^{L/R} + 2_{\pm 1/2}^{L/R}$
11	$(\bar{L}i\tau^{2}H^{*})(H^{T}E)(i\tau^{2})(\bar{E}L)$	1/4	-1/4		$2_{\pm 1/2}^{s} + 1_{-1}^{L/R} + 2_{-3/2}^{L/R}$
12	$(\bar{L}\tau_{1}^{*}\tau^{2}H^{*})(H^{T}E)(i\tau^{2}\tau)(\bar{E}L)$	3/4	1/4		$2_{\pm 1/2}^{s} + 3_{-1}^{L/R} + 2_{-3/2}^{L/R}$
Combination $\overline{E^c}L$					
13	$(\bar{L}\gamma^{\rho}E^{c})(\overline{E^{c}}\gamma_{\rho}L)(H^{\dagger}H)$	$^{-1}$			$2^{v}_{-3/2}$
14	$(\bar{L}\gamma^{\rho}E^{c})(\vec{\tau})(\overline{E^{c}}\gamma_{\rho}L)(H^{\dagger}\vec{\tau}H)$		$^{-1}$		$2^{v}_{-3/2}$
15	$(\overline{L}H)(\gamma^{\rho})(H^{\dagger}E^{c})(\overline{E^{c}}\gamma_{\rho}L)$	-1/2	-1/2	~	$2_{-3/2}^v + 1_0^R + 2_{+3/2}^{L/R}$
16	$(\bar{L}\vec{\tau}H)(\gamma^{\rho})(H^{\dagger}E^{c})(\vec{\tau})(\overline{E^{c}}\gamma_{\rho}L)$	-3/2	1/2		$2_{-3/2}^v + 3_0^{L/R} + 2_{+3/2}^{L/R}$
17	$(\overline{L}i\tau^2 H^*)(\gamma^{\rho})(H^T E^c)(i\tau^2)(\overline{E^c}\gamma_{\rho}L)$	-1/2	1/2		$2^{v}_{2/2} + 1^{L/R}_{-1} + 2^{L/R}_{+1/2}$
18	$(\overline{L}\tau i\tau^2 H^*)(\gamma^{\rho})(H^T E^c)(i\tau^2 \tau)(\overline{E^c}\gamma_{\rho}L)$	-3/2	-1/2		$2_{-3/2}^v + 3_{-1}^{L/R} + 2_{+1/2}^{L/R}$
Combination $H^{\dagger}L$					
19	$(\overline{L}E)(\overline{E}H)(H^{\dagger}L)$	-1/4	-1/4	~	$2_{\pm 1/2}^{s} + 1_{0}^{R} + 2_{\pm 1/2}^{L/R}$
20	$(\bar{L}E)(\vec{\tau})(\bar{E}H)(H^{\dagger}\vec{\tau}L)$	-3/4	1/4		$2_{\pm 1/2}^{s} + 3_{0}^{L/R} + 2_{-1/2}^{L/R}$
21	$(\bar{L}H)(\gamma^{\rho})(H^{\dagger}L)(\bar{E}\gamma_{\rho}E)$	1/2	1/2	~	$1_0^v + 1_0^R$
22	$(\bar{L}\vec{\tau}H)(\gamma^{\rho})(H^{\dagger}\vec{\tau}L)(\bar{E}\gamma_{\rho}E)$	3/2	-1/2		$1_0^v + 3_0^{L/R}$
23	$(\overline{L}\gamma^{\rho}E^{c})(\overline{E^{c}}H)(\gamma^{\rho})(H^{\dagger}L)$	-1/2	-1/2	~	$2_{-3/2}^v + 1_0^R + 2_{+3/2}^{L/R}$
24	$(\overline{L}\gamma^{\rho}E^{c})(\overline{E^{c}}H)(\gamma^{\rho})(H^{\dagger}L)$	-3/2	1/2		$2_{-3/2}^{v} + 3_{0}^{L/R} + 2_{+3/2}^{L/R}$
Combination HL					
25	$(\bar{L}E)(i\tau^{2})(\bar{E}H^{*})(H^{T}i\tau^{2}L)$	1/4	-1/4		$2_{\pm 1/2}^{s} + 1_{-1}^{L/R} + 2_{-3/2}^{L/R}$
26	$(\bar{L}E)(\tau_{1}\tau_{2})(\bar{E}H^{*})(H^{T}i\tau_{2}\tau_{L})$	3/4	1/4		$2_{\pm 1/2}^{s} + 3_{-1}^{L/R} + 2_{-3/2}^{L/R}$
27	$(Li\tau^2 H^*)(\gamma^{\rho})(H^Ti\tau^2 L)(E\gamma_{\rho}E)$	-1/2	1/2		$1_0^v + 1_{-1}^{L/R}$
28	$(\bar{L}\tau \tau^2 H^*)(\gamma^{\rho})(H^T i \tau^2 \tau L)(\bar{E}\gamma_{\rho}E)$	-3/2	-1/2		$1_{0}^{v} + 3_{-1}^{L/R}$
29	$(\overline{L}\gamma^{\rho}E^{c})(i\tau^{2})(\overline{E^{c}}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}L)$	1/2	-1/2		$2_{-3/2}^v + 1_{-1}^{L/R} + 2_{+1/2}^{L/R}$
30	$(\overline{L}\gamma^{\rho}E^{c})(\tau^{i}\tau^{2})(\overline{E^{c}}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}\tau^{2}L)$	3/2	1/2		$2_{-3/2}^v + 3_{-1}^{L/R} + 2_{+1/2}^{L/R}$

T. Ota (Uni Würzburg)

Nufact opt for NSI

Outline

Introduction

- 2 NSI search in a neutrino factory
 - Neutrino factory for standard oscillation parameters
 - Neutrino factory for NSI
 - Correlations between NSIs
 - Silver detector for NSI
 - Optimization of Golden detector baselines

3 Model building for large NSI [short comment]

4 Summary

Nufact opt for NSI

Backup: Experimental setup

Our setup is based on IDS-NF baseline:

- 50 kton Magnetized Iron Detector (MIND) for Golden and Disapp. channels.
- 10 kton emulsion cloud chamber for Silver channel
- Silver* = signal $\times 5$ and background $\times 3$.
- $2.5 \cdot 10^{21}$ useful muon decays per baseline and polarity
- Charge ID in Golden and Silver channels, but not in Disapp.

We can count out charge missID background. Huber Lindner Rolinec Winter PRD74 (2006) 073003.

Summary

Backup: higher muon energy $E_{\mu} = 50 \text{ GeV}$

