The Low Energy Neutrino Factory

Tracey Li IPPP, Durham University

NuFact09 Illinois Institute of Technology, Chicago 21st July 2009

In collaboration with: Alan Bross, Malcolm Ellis, Enrique Fernandez-Martinez, Steve Geer, Olga Mena and Silvia Pascoli

Future long-baseline experiments are primarily designed to measure:

- δ (CP violating phase)
- θ_{13} (third mixing angle)
- Sign of Δm_{31}^2 (mass hierarchy)

We are optimizing the low energy neutrino factory to measure these parameters.

This talk will cover:

- The experiment set-up
- Physics of neutrino oscillations
- Results for a TASD and preliminary results for a LAr detector
- Summary

(本間) (本語) (本語)

Overview of the low energy neutrino factory

- Create an intense source of μ^{\pm} .
- Cool the $\mu^{\pm} \Rightarrow$ 70% increase in flux.
- Accelerate them to energies of $E_{\mu} \sim 5$ GeV.
- Inject into a storage ring where the muons decay: $\mu^{\pm} \rightarrow e^{\pm} \nu_e(\bar{\nu}_e) \bar{\nu}_{\mu}(\nu_{\mu})$
- Detect the neutrinos at a baseline of 1300 km (FNAL to DUSEL).

Overview of the low energy neutrino factory

- Use a magnetized totally active scintillating detector (TASD) or liquid argon (LAr) detector.
- Magnetization is achieved through a magnetic cavern (superconducting transmission lines).
- These detectors can detect e^{\pm} and μ^{\pm} \Rightarrow access to the $(\bar{\mathbf{v}}^{)}_{\mu} \rightarrow (\bar{\mathbf{v}}^{)}_{e}$ channel as well as $(\bar{\mathbf{v}}^{)}_{e} \rightarrow (\bar{\mathbf{v}}^{)}_{\mu}$ and $(\bar{\mathbf{v}}^{)}_{\mu} \rightarrow (\bar{\mathbf{v}}^{)}_{\mu}$.

A D N A B N A B

The set-up

For the LENF beam set-up we assume:

• $1.4\times 10^{21}~\mu^+$ and μ^- decays per year

[C. Ankenbrandt et al. FERMILAB-PUB-09-0010APC (2009)]

• 10 years running

For the TASD we assume:

- μ^\pm detection efficiency of 73% < 1 GeV and 94% $\geqslant 1$ GeV
- e^{\pm} detection efficiency of 37% < 1 GeV and 47% $\geqslant 1$ GeV
- Background of 10^{-3} on the $(\bar{\nu}_{\mu}^{)}$ appearance and disappearance channels
- \bullet Background of 10^{-2} on the ${}^{(}\bar{\nu}_{e}^{)}$ appearance channel
- Detector fiducial mass of 20 kton
- Energy resolution, dE/E, of 10%

TASD simulations

The TASD can distinguish μ^{\pm} , e^{\pm} and pions (work in progress). μ^{-} (2700 MeV/c):

TASD simulations

$$e^+$$
 (1200 MeV/c):

 π^- (2600 MeV/c):

The Low Energy Neutrino Factory

< 🗇 🕨

э

2

Physics of LBL ν oscillations

• The 'golden channel' is the $v_e \rightarrow v_\mu$ channel: [A. Cervera et al, 'Golden measurements at a neutrino factory']

$$\begin{split} P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) &= s_{213}^{2} s_{23}^{2} \left(\left(1 + \frac{4EA}{\Delta m_{31}^{2}} \right) \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E} \right) - AL \sin \left(\frac{\Delta m_{31}^{2}L}{4E} \right) \cos \left(\frac{\Delta m_{31}^{2}L}{4E} \right) \right) \\ &+ \alpha s_{213} s_{212} s_{223} \frac{\Delta m_{31}^{2}L}{4E} \left(\left(1 + \frac{2EA}{\Delta m_{31}^{2}} \right) \sin \left(\frac{\Delta m_{31}^{2}L}{4E} \right) - \frac{AL}{2} \cos \left(\frac{\Delta m_{31}^{2}L}{4E} \right) \right) \cos \left(\frac{\Delta m_{31}^{2}L}{4E} - \delta \right) \\ &+ \alpha^{2} c_{23}^{2} s_{212}^{2} \left(\frac{\Delta m_{31}^{2}L}{4E} \right)^{2} \end{split}$$

- This channel contains information on all the parameters we want to measure.
- Information is extracted by looking at the shape of the oscillation spectrum.

・ロン ・回と ・ヨン ・ヨン

Physics of LBL ν oscillations

- θ_{13} controls the amplitude of the oscillation \Rightarrow high statistics.
- CP violation is a low energy effect ⇒ detector with low energy threshold.
- Hierarchy determined at high energy \Rightarrow long baseline.

Optimization: muon energy

- Need to maximize the oscillation signal (events \lesssim 3 GeV), and minimize the non-oscillating (higher energy) background.
- ν energy spectrum:

• The optimal muon energy is $E_{\mu} \sim 4.5$ GeV.

Optimization: statistics

- One advantage of the LENF is its high statistics.
- Compare the results using 5.0 \times 10²⁰ μ^{\pm} decays per year (blue) and 1.4 \times 10²¹ decays (red):

 1σ and 3σ contours in $\theta_{13} - \delta$ plane:

Optimization: energy resolution

- The better the energy resolution, the more accurately the oscillation spectrum can be determined.
- For 1.4×10^{21} decays, gain significant improvement in going from dE/E = 30% to 10%:

The $(ar{m{ u}}_e^)$ appearance channel

- If the set-up is not optimized, the $(\bar{\mathbf{v}}_e)$ appearance channel increases sensitivity to θ_{13} , δ and the mass hierarchy (left).
- With optimized E_{μ} , statistics and energy resolution, the additional channel helps only with the hierarchy determination (right).

A D N A B N A B

Liquid argon detector

- LAr simulations are still in early stages
 - \Rightarrow large uncertainties in experimental parameters
- Consider two extreme scenarios for a 100 kton LAr detector:

	Conservative	Optimistic
Efficiency - all channels	80%	80%
Systematics	5%	2%
Energy resolution -	5%	5%
QE events		
Energy resolution -	20%	10%
non-QE events		
Background on $ u_{\mu}$	$5 imes 10^{-3}$	$1 imes 10^{-3}$
(dis)appearance channels		
Background on $ u_e$	0.8	$1 imes 10^{-2}$
appearance channels		

[B. Fleming - private communication reported in hep-ph/0703029]

< - 1 → 1

LAr: systematics, energy resolution, backgrounds

Check the effect of systematics, energy resolution and backgrounds individually, on θ_{13} discovery potential:

 \Rightarrow The background on the ν_{μ} (dis)appearance channels has the dominant effect.

The Low Energy Neutrino Factory

・ロト ・回ト ・ヨト

< ∃ >

Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF, T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for θ_{13} discovery potential (3 σ):

Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF, T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for CP discovery potential (3σ) :

A ■

Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF, T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for hierarchy sensitivity (3σ):

Summary

- We have simulated the following LENF set-up, optimized for measuring θ_{13} , δ and the mass hierarchy: L = 1300 km, $E_{\mu} = 4.5$ GeV, $1.4 \times 10^{21} \mu^{\pm}$ decays per year for 10 years.
- Using either a 20 kton TASD or 100 kton LAr detector, the LENF has excellent sensitivity to θ_{13} down to $\sin^2(2\theta_{13})\simeq 10^{-4}$, to CP violation for $\sin^2(2\theta_{13})\gtrsim 10^{-4}$, and to the mass hierarchy for $\sin^2(2\theta_{13})\gtrsim 10^{-3}$.
- Future detailed studies of TASD and LAr detector performance will allow a full assessment of the capabilities of the set-up.

・ロン ・回と ・ヨン・

Appendix: Experiment details

- HENF: E_μ = 20 GeV, 10²¹ decays/ year, 2% systematics, 5 years in μ⁻ mode + 5 years in μ⁺ mode. Detectors: 50 kton MIND @ 4000 km and 7500 km, threshold = 1 GeV, efficiency = 50%.
- **T2HK**: 4 MW, 50 GeV protons, 2 years v + 8 years \bar{v} . Detector: 440 kton WC @ 295 km, 2⁰ off-axis.
- WBB: 120 GeV protons, 10^{21} PoT/ year, 5% systematics, 5 years @ 1 MW (ν) + 5 years @ 2 MW ($\bar{\nu}$). Detector: 100 kton LAr.