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Introduction

Future long-baseline experiments are primarily designed to measure:

δ (CP violating phase)

θ13 (third mixing angle)

Sign of ∆m
2
31 (mass hierarchy)

We are optimizing the low energy neutrino factory to measure
these parameters.

This talk will cover:

The experiment set-up

Physics of neutrino oscillations

Results for a TASD and preliminary results for a LAr detector

Summary
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Overview of the low energy neutrino factory

Create an intense source of µ±.

Cool the µ±
⇒ 70% increase

in flux.

Accelerate them to energies of
Eµ ∼ 5 GeV.

Inject into a storage ring where
the muons decay:
µ±

→ e
±νe(ν̄e)ν̄µ(νµ)

Detect the neutrinos at a
baseline of 1300 km (FNAL to
DUSEL).

[A. Bross]
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Overview of the low energy neutrino factory

Use a magnetized totally active
scintillating detector (TASD)
or liquid argon (LAr) detector.

Magnetization is achieved
through a magnetic cavern
(superconducting transmission
lines).

These detectors can detect e
±

and µ±

⇒ access to the (ν̄
)
µ →

( ν̄
)
e

channel as well as (ν̄
)
e →

( ν̄
)
µ

and (ν̄
)
µ →

( ν̄
)
µ.
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The set-up

For the LENF beam set-up we assume:

1.4 × 1021 µ+ and µ− decays per year
[C. Ankenbrandt et al. FERMILAB-PUB-09-0010APC (2009)]

10 years running

For the TASD we assume:

µ± detection efficiency of 73% < 1 GeV and 94% > 1 GeV

e
± detection efficiency of 37% < 1 GeV and 47% > 1 GeV

Background of 10−3 on the (ν̄
)
µ appearance and

disappearance channels

Background of 10−2 on the (ν̄
)
e appearance channel

Detector fiducial mass of 20 kton

Energy resolution, dE/E , of 10%
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TASD simulations

The TASD can distinguish µ±, e
± and pions (work in progress).

µ− (2700 MeV/c):
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TASD simulations

e
+ (1200 MeV/c): π− (2600 MeV/c):
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Physics of LBL ν oscillations

The ‘golden channel’ is the νe → νµ channel:
[A. Cervera et al, ‘Golden measurements at a neutrino factory’]
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This channel contains information on all the parameters we
want to measure.

Information is extracted by looking at the shape of the
oscillation spectrum.
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Physics of LBL ν oscillations

[O. Mena]

θ13 controls the amplitude of the oscillation ⇒ high statistics.

CP violation is a low energy effect ⇒ detector with low energy
threshold.

Hierarchy determined at high energy ⇒ long baseline.
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Optimization: muon energy

Need to maximize the oscillation signal (events . 3 GeV), and
minimize the non-oscillating (higher energy) background.

ν energy spectrum:
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The optimal muon energy is Eµ ∼ 4.5 GeV.
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Optimization: statistics

One advantage of the LENF is its high statistics.

Compare the results using 5.0 × 1020 µ± decays per year
(blue) and 1.4 × 1021 decays (red):

1σ and 3σ contours in θ13 − δ plane:
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GLoBES 3.0 [A. Bross et al, in preparation]

⇒ Statistics are very important for the LENF.
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Optimization: energy resolution

The better the energy resolution, the more accurately the
oscillation spectrum can be determined.

For 1.4 × 1021 decays, gain significant improvement in going
from dE/E = 30% to 10%:
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The (ν̄
)
e appearance channel

If the set-up is not optimized, the (ν̄
)
e appearance channel

increases sensitivity to θ13, δ and the mass hierarchy (left).

With optimized Eµ, statistics and energy resolution, the
additional channel helps only with the hierarchy determination
(right).

4 GeV, 5.0 × 1020 decays, dE/E = 30%
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4.5 GeV, 1.4 × 1021 decays, dE/E = 10%
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[A. Bross et al, in preparation]
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Liquid argon detector

LAr simulations are still in early stages
⇒ large uncertainties in experimental parameters

Consider two extreme scenarios for a 100 kton LAr detector:

Conservative Optimistic

Efficiency - all channels 80% 80%

Systematics 5% 2%

Energy resolution - 5% 5%
QE events

Energy resolution - 20% 10%
non-QE events

Background on νµ 5 × 10−3 1 × 10−3

(dis)appearance channels

Background on νe 0.8 1 × 10−2

appearance channels

[B. Fleming - private communication reported in hep-ph/0703029]
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LAr: systematics, energy resolution, backgrounds

Check the effect of systematics, energy resolution and backgrounds
individually, on θ13 discovery potential:

Systematics and energy resolution
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⇒ The background on the νµ (dis)appearance channels has the
dominant effect.
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Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF,
T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for
θ13 discovery potential (3σ):
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Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF,
T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for
CP discovery potential (3σ):
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Comparison with other experiments

Compare LENF results (TASD and LAr) with those for the HENF,
T2HK (ISS report [0710.4947]) and WBB ([hep-ph/0703029]) for
hierarchy sensitivity (3σ):
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Summary

We have simulated the following LENF set-up, optimized for
measuring θ13, δ and the mass hierarchy:
L = 1300 km, Eµ = 4.5 GeV, 1.4 × 1021 µ± decays per year
for 10 years.

Using either a 20 kton TASD or 100 kton LAr detector, the
LENF has excellent sensitivity to θ13 down to
sin2(2θ13) ≃ 10−4, to CP violation for sin2(2θ13) & 10−4, and
to the mass hierarchy for sin2(2θ13) & 10−3.

Future detailed studies of TASD and LAr detector
performance will allow a full assessment of the capabilities of
the set-up.
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Appendix: Experiment details

HENF: Eµ = 20 GeV, 1021 decays/ year, 2% systematics, 5
years in µ− mode + 5 years in µ+ mode.
Detectors: 50 kton MIND @ 4000 km and 7500 km, threshold
= 1 GeV, efficiency = 50%.

T2HK: 4 MW, 50 GeV protons, 2 years ν + 8 years ν̄.
Detector: 440 kton WC @ 295 km, 20 off-axis.

WBB: 120 GeV protons, 1021 PoT/ year, 5% systematics, 5
years @ 1 MW (ν) + 5 years @ 2 MW (ν̄).
Detector: 100 kton LAr.
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