Testing neutrino mass generation at LHC

- Introduction: Anything LHC has to say about ν oscillations is model dependent.
- Neutrino masses and lepton number violation
- Signatures of see-saw messengers at LHC
- Multilepton signals at LHC

Neutrino masses and lepton number violation

The signals of new physics at large colliders depend on the new masses and couplings.

Here, we are mainly interested in new particles which may contribute to light neutrino masses, in particular which result upon integration in the only dimension 5 operator involving Standard Model fields and generating Majorana masses for the 3 known v's.

$$\mathcal{O}_5 = \overline{l_L^c} ilde{\phi}^* ilde{\phi}^\dagger l_L$$
 s

Weinberg, Phys. Rev. Lett. 43 (1979) 1566

There are 3 such tree level messengers: N, Δ , Σ . (There are other ways to give neutrino masses if they are, for instance, Dirac particles. E. Ma, arXiv: 0905.0221 [hep-ph])

See-saw messengers of type I,II and III

 $\frac{1}{2} \mathbf{Y}_{\mathsf{N}}^{\mathsf{T}} \mathbf{M}_{\mathsf{N}}^{-1} \mathbf{Y}_{\mathsf{N}} -2 \mathbf{Y}_{\Delta} \boldsymbol{\mu}_{\Delta} \mathbf{M}_{\Delta}^{-2} -\frac{1}{2} \mathbf{Y}_{\Sigma}^{\mathsf{T}} \mathbf{M}_{\Sigma}^{-1} \mathbf{Y}_{\Sigma}$

Phase cancellationsmall coupling(s)Phase cancellationor small couplingsor small couplings

A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, JHEP 0712 (2007) 061

Chicago, July 21, 2009

Some debate on N production and detection

X.-G. He, S. Oh, J. Tandean and C.-C. Wen, arXiv: 0907.1607

The production mechanism is proportional to the mixing between the light leptons and the new heavy neutrino N,

as there are the light neutrino masses, BUT in the first case enters the specific mixing matrix element and in the second one the combination of all of them and cancellations are possible.

Some debate on N production and detection

F.A., J. de Blas and M. Pérez.-Victoria, Phs. Rev. D78 (2008) 013010

The observation of this signal requires, as always, relatively small backgrounds, which are different for heavy Majorana and Dirac neutrinos. T. Han and B. Zhang, Phys. Rev. Lett. 97 (2006) 171804

Although for heavy Majorana neutrinos the signal is lepton number violating, the backgrounds are not completely negligible for the energies and cross sections involved.

Signatures of see-saw messengers at LHC

Fermion singlet N

F.A., J.A. Aguilar-Saavedra and R. Pittau, JHEP 0710 (2007) 047

Large backgrounds

	Р	re-selecti	on	1	Selection	1
	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$\mu^{\pm}e^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$\mu^{\pm}e^{\pm}$
N (a)	113.6	0	0	59.1	0	0
N (b)	0	72.0	0	0	17.6	0
N (c)	78.4	25.5	82.6	41.6	4.7	22.4
$b\bar{b}nj$	14800	52000	82000	0	0	0
$c\bar{c}nj$	(11)	300	200	(0)	0	0
$t\bar{t}nj$	1162.1	8133.0	15625.3	2.4	8.3	7.7
tj	60.8	176.5	461.5	0.0	0.0	0.1
$W b \overline{b} n j$	124.9	346.7	927.3	0.4	0.6	0.3
$W t \bar{t} n j$	75.7	87.2	166.9	0.3	0.0	0.0
$Z b \overline{b} n j$	12.2	68.9	117.0	0.0	0.2	0.0
WWnj	82.8	89.0	174.8	0.5	0.1	0.7
WZnj	162.4	252.0	409.2	4.8	1.8	2.3
ZZnj	3.8	13.3	12.9	0.0	0.6	0.1
WWWnj	31.9	30.1	64.8	0.9	0.1	0.0

Table 1: Number of $\ell^{\pm}\ell^{\pm}jj$ events at LHC for $30 \,\text{fb}^{-1}$, at the pre-selection and selection levels. The heavy neutrino signal is evaluated assuming $m_N = 150 \,\text{GeV}$ and coupling (a) to the muon, $V_{\mu N} = 0.098$; (b) to the electron, $V_{eN} = 0.073$; (c) to both, $V_{eN} = 0.073$ and $V_{\mu N} = 0.098$.

Chicago, July 21, 2009

F. del Águila (Univ. de Granada)

LNC signals may be more significant than LNV ones

$$\begin{split} q\bar{q}' &\to \ell^+ N \to \ell^+ \ell^- W^+ \to \ell^+ \ell^- \ell^+ \nu \quad (\text{LNC}) \\ q\bar{q}' &\to \ell^+ N \to \ell^+ \ell^+ W^- \to \ell^+ \ell^+ \ell^- \bar{\nu} \quad (\text{LNV}) \end{split}$$

m_N = 100 GeV $\ell^\pm\ell^\pm~(2\mu)$ $\ell^{\pm}\ell^{\pm}\ell^{\mp} (2e) \quad \ell^{\pm}\ell^{\pm}\ell^{\mp} (2\mu) \quad \ell^{\pm}\ell^{\pm} (2e)$ $|V|^2 = 0.003$ $28.6\,{\rm Difference}\,{\rm due}\,0$ 11.3N (S1.M) 0 44.8 to kinematics $_0$ N (S1,D) 0.40 N (S2,M) 0 29.613.40 N (S2,D) 0 45.80.50 SM Bkg 116.445.636.120.2

F.A. and J.A. Aguilar-Saavedra, Phys. Lett. B672 (2009) 158

Table 1: Number of events with 30 fb⁻¹ for the Majorana (M) and Dirac (D) neutrino singlet signals in scenarios S1 and S2, and SM background in different final states.

Coupling to e and μ, respectively

Some debate on LNV versus LNC signals

LNV signals have smaller backgrounds than LNC ones BUT for a fixed number of final particles. As a matter of fact the significance of trilepton LNC signals is similar to the significance of LNV dilepton signals.

At any rate, multilepton signals are complementary in order to discriminate between models. Scalar and fermion triplets mediating the see-saw mechanism have final states with many leptons (up to 6), as many other new particles at the TeV scale (as, for example, heavy leptons or quarks, or Z's decaying into them).

Scalar triplet decay

A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Nucl. Phys. B787 (2007) 198

 Δ BR's into leptons are a high energy window to neutrino masses and mixings, and may even allow for reconstructing the MNS matrix.

P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Phys. Rev. D78 (2008) 015018

F.A. and J.A. Aguilar-Saavedra, Nucl. Phys. B813 (2009) 22

Relevant quantity

$$r_{e\mu} \equiv \operatorname{Br}(\Delta^{\pm\pm} \to e^{\pm}e^{\pm}/\mu^{\pm}\mu^{\pm}/e^{\pm}\mu^{\pm})$$

depends on m_{ν} , θ , δ , β

Chicago, July 21, 2009

LHC reach Δ : 600 (800) GeV for NH (IH)

 $m_{l_{1}l_{2}}$

50

 $l^{\pm}l^{\pm}$

A. Arhrib, B. Bajc, D.K. Ghosh, T. Han, G.Y. Huang, I. Puljak and G. Senjanovic, arXiv:0904.2390 [hep-ph]

F.A. and J.A. Aguilar-Saavedra	, Phys. Lett.	B672	(2009) 158
--------------------------------	---------------	------	------------

m	∑= 300 Ge\	∕ 6ℓ	5ℓ	$\ell^\pm\ell^\pm\ell^\pm\ell^\mp$	$\ell^+\ell^+\ell^-\ell^-$	$\ell^\pm\ell^\pm\ell^\pm$	$\ell^\pm\ell^\pm\ell^\mp$	$\ell^\pm\ell^\pm$	$\ell^+\ell^-$	ℓ^{\pm}
$\sigma_{\rm p} = 2 \sigma$	Σ (M)	0.6	10.6	17.4	55.7	10.2	110.3	177.8	178.7	232.4
	Σ (D)	1.9	21.4	9.1	173.4	2.9	194.4	4.4	607.0	314.9
	$\rm SM \ Bkg$	0.0	0.9	2.5	14.3	1.9	15.9	19.5	548.3	1328

Table 2: Number of events with 30 fb⁻¹ for the fermion triplet signals with Majorana (M) and Dirac (D) neutrinos, and SM background in different final states.

FCNC D. Ibañez, S. Morisi and J.W.F. Valle, arXiv:0907.3109 [hep-ph]

Chicago, July 21, 2009 F. del Águila (Univ. de Granada)

 $240 < m_N^{\rm rec} < 360 \; {\rm GeV}$

	Pre.	Sel.	Peak		Pre.	Sel.	Peak	
E^+E^- ($\Sigma_{\rm M}$)	58.1	26.3	5.7	$E^+E^ (EN_{\rm d})$	38.3	23.7	5.4	
$E^{\pm}N~(\Sigma_{\mathrm{M}})$	269.2	192.2	86.3	$E^{\pm}N~(EN_{\rm d})$	393.2	355.1	183.8	
$E_1^+ E_1^- (\Sigma_{\rm D})$	127.2	80.9	20.0	$NN~(EN_{ m d})$	164.4	155.7	87.8	
$E_2^+ E_2^- (\Sigma_{\rm D})$	0.0	0.0	0.0	$E^+E^ (E_{\rm s})$	8.2	3.1	0.7	
$E_1^{\pm}N~(\Sigma_{ m D})$	502.1	370.2	181.9	$NN~(Z'N_{\rm M})$	311.0	252.6	143.2	
$E_2^{\pm}N \ (\Sigma_{\rm D})$	36.1	28.1	3.3	$NN~(Z'N_{\rm D})$	576.2	481.9	285.5	
$t \bar{t} n j$	236	156	0	WZnj	1540	38	2	
$W t \bar{t} n j$	54	47	6	ZZnj	86	5	0	
$Z t \bar{t} n j$	151	20	3	WWWnj	17	12	3	

 $m_{\Sigma,...} = 300 \text{ GeV}$

Table 4: Number of events in the $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (no Z) sample for the signals and mainbackgrounds with a luminosity of 30 fb⁻¹.J.A. Aguilar-Saavedra, arXiv:0905.2221 [hep-ph]

Chicago, July 21, 2009

F. del Águila (Univ. de Granada)

		Pre.	Sel.	Peak		Pre.	Sel.	Peak
	E^+E^- ($\Sigma_{\rm M}$)	21.7	1.6	0.3	$E^+E^ (EN_{\rm d})$	10.5	1.2	0.3
	$E^{\pm}N(\Sigma_{\rm M})$	658.0	240.0	144.8	$E^{\pm}N~(EN_{\rm d})$	111.8	6.2	1.9
	$E_1^+ E_1^- (\Sigma_{\rm D})$	25.6	4.2	0.7	$NN~(EN_{ m d})$	47.7	1.9	0.8
$m_{\Sigma,} = 300 \text{ GeV}$	$E_2^+ E_2^- (\Sigma_{\rm D})$	0.0	0.0	0.0	$E^+E^ (E_{\rm s})$	2.5	0.0	0.0
	$E_1^{\pm}N~(\Sigma_{ m D})$	174.4	9.4	2.7	$NN~(Z'N_{\rm M})$	433.5	202.1	132.0
	$E_2^{\pm}N~(\Sigma_{\rm D})$	472.0	2.9	0.9	$NN~(Z'N_{\rm D})$	206.0	8.1	3.1
	$t\bar{t}nj$	1412	194	7	WWnj	245	15	3
	tW	96	6	0	WZnj	1056	24	1
	$W t \bar{t} n j$	184	12	1	ZZnj	110	7	1

Table 8: Number of events in the $\ell^{\pm}\ell^{\pm}$ (no p_T) sample for the signals and main backgrounds with a luminosity of 30 fb⁻¹.< 30 GeV

LHC reach Σ : 750 (700) GeV for Majorana (Dirac) coupling to *e* or μ

Many other Standard Model additions give multilepton signals, and the comparison of different channels in general allows for discriminating between them. F. A., LI. Ametller, G.L. Kane and J. Vidal, Nucl. Phys. B 334 (1990) 1

Chicago, July 21, 2009

Table 14: Luminosities (in fb⁻¹) required for 5σ discovery for the models in the left column in the final states indicated. The presence of a peak in the heavy lepton pair invariant mass is indicated with a "P". A dash indicates an unobservable signal, or a discovery luminosity larger than 30 fb⁻¹.

Chicago, July 21, 2009

$T_{\mathbf{s}}$	$B_{\mathbf{s}}$	$TB_{\rm d}$	$XT_{\rm d}$	$BY_{\rm d}$
_	$24 {\rm ~fb^{-1}}$	$18 \ {\rm fb}^{-1}$	$23 {\rm ~fb^{-1}}$	10 fb^{-1}
$11 { m ~fb^{-1}}$	14 fb^{-1}	$5.7 { m fb^{-1}}$	$3.3 { m ~fb^{-1}}$	$50 \ \mathrm{fb^{-1}}$
$35 \ \mathrm{fb}^{-1}$	25 fb^{-1}	$11~{ m fb}^{-1}$	$3.5 {\rm ~fb^{-1}}$	—
$3.4 { m ~fb^{-1}}$	3.4 fb^{-1}	$1.1 { m fb^{-1}}$	$0.72 { m ~fb^{-1}}$	26 fb^{-1}
$11 { m ~fb^{-1}}$	$3.5~{\rm fb^{-1}}$	$1.1 { m ~fb^{-1}}$	$0.25 { m fb^{-1}}$	—
17 fb^{-1}	$4.1 {\rm ~fb^{-1}}$	$1.5 {\rm ~fb^{-1}}$	$0.23 { m fb^{-1}}$	—
22 fb^{-1}	4.5 fb^{-1}	$2.4 { m ~fb^{-1}}$	$4.4 { m ~fb^{-1}}$	$1.8~{\rm fb^{-1}}$
_	—	30 fb^{-1}	—	$9.2~{\rm fb}^{-1}$
$2.7 { m ~fb^{-1}}$	$9.3~{\rm fb^{-1}}$	$0.83 { m fb^{-1}}$	$1.1 { m ~fb^{-1}}$	$0.87 { m ~fb^{-1}}$
$1.1 { m ~fb^{-1}}$	—	$0.60 {\rm ~fb^{-1}}$	_	$0.18 { m ~fb^{-1}}$
$0.70 {\rm ~fb^{-1}}$	$1.9 {\rm ~fb^{-1}}$	$0.25 {\rm ~fb^{-1}}$	$0.16 {\rm ~fb^{-1}}$	6.2 fb^{-1}
$11 { m ~fb^{-1}}$	—	$9.4~{\rm fb}^{-1}$	$2.7 { m ~fb^{-1}}$	—
	$T_{\rm s}$ - 11 fb ⁻¹ 35 fb ⁻¹ 3.4 fb ⁻¹ 11 fb ⁻¹ 17 fb ⁻¹ 22 fb ⁻¹ - 2.7 fb ⁻¹ 1.1 fb ⁻¹ 0.70 fb ⁻¹ 11 fb ⁻¹	$\begin{array}{cccc} T_{\rm s} & B_{\rm s} \\ - & 24~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & 14~{\rm fb}^{-1} \\ 35~{\rm fb}^{-1} & 25~{\rm fb}^{-1} \\ 3.4~{\rm fb}^{-1} & 3.4~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & 3.5~{\rm fb}^{-1} \\ 17~{\rm fb}^{-1} & 4.1~{\rm fb}^{-1} \\ 22~{\rm fb}^{-1} & 4.5~{\rm fb}^{-1} \\ - & - \\ 2.7~{\rm fb}^{-1} & 9.3~{\rm fb}^{-1} \\ 1.1~{\rm fb}^{-1} & - \\ 0.70~{\rm fb}^{-1} & 1.9~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & - \end{array}$	$\begin{array}{cccccccc} T_{\rm s} & B_{\rm s} & TB_{\rm d} \\ - & 24~{\rm fb}^{-1} & 18~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & 14~{\rm fb}^{-1} & 5.7~{\rm fb}^{-1} \\ 35~{\rm fb}^{-1} & 25~{\rm fb}^{-1} & 11~{\rm fb}^{-1} \\ 3.4~{\rm fb}^{-1} & 3.4~{\rm fb}^{-1} & 1.1~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & 3.5~{\rm fb}^{-1} & 1.1~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & 4.1~{\rm fb}^{-1} & 1.5~{\rm fb}^{-1} \\ 22~{\rm fb}^{-1} & 4.5~{\rm fb}^{-1} & 2.4~{\rm fb}^{-1} \\ - & - & 30~{\rm fb}^{-1} \\ 2.7~{\rm fb}^{-1} & 9.3~{\rm fb}^{-1} & 0.83~{\rm fb}^{-1} \\ 1.1~{\rm fb}^{-1} & - & 0.60~{\rm fb}^{-1} \\ 0.70~{\rm fb}^{-1} & 1.9~{\rm fb}^{-1} & 0.25~{\rm fb}^{-1} \\ 11~{\rm fb}^{-1} & - & 9.4~{\rm fb}^{-1} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 34: Luminosity required to have a 5σ discovery in all final states studied.

J.A. Aguilar-Saavedra, arXiv:0907.3155 [hep-ph]

Chicago, July 21, 2009

<u>Summary</u>

N:	120	(150)	GeV	for D	/ M	coupling	to e	(μ)
----	-----	-------	-----	-------	-----	----------	------	---------

LHC reach Δ : 600 (800) GeV for NH (IH)

 Σ : 750 (700) GeV for Majorana (Dirac) coupling to *e* or μ

		$\ell^\pm \ell^\pm \ell^\mp$ (no $Z)$	$\ell^\pm\ell^\pm\ell^\mp~(Z)$	$\ell^{\pm}\ell^{\pm}$ (no p_T)	$\ell^{\pm}\ell^{\pm} \left(p_{T}^{\prime} \right)$	$\ell^+\ell^+\ell^-\ell^-$
Multilepton	Σ_{M}	3.3	25	2.1	3.5	6.6
5σ discovery	Σ_{D}	1.5	17		1.8	1.8
luminosity	$EN_{ m d}$	1.1		—		3.0
	$E_{ m s}$	_	—	_	—	-
M = 300 GeV	$Z'N_{ m M}$	2.1 P	_	2.3 P	13	-
	$Z'N_{ m D}$	1.1 P		_	22	-

Chicago, July 21, 2009

Thanks for your attention

F.A. et al., NPB 813 (2009) 22, Distinguishing see-saw models at LHC with multi-lepton signals

$\frac{S}{\sqrt{D}}$	Significance with	n 1 fb ^{−1}					
\sqrt{B}		$M_1 + M_2$	0ℓ	ℓ^{\pm}	$\ell^+\ell^-$	$\ell^\pm\ell^\pm$	$\ell^\pm\ell^\pm\ell^\mp$
	Δ (NH)	300 + 300	_	_	1.9	2.2	4.2
	Δ (IH)	300 + 300	-	-	1.1	3.1	8.3
	Σ (M)	300 + 300	_	_	1.4	(5.0)	3.9
	Σ (D)	300 + 300	-	-	4.7	-	6.2
	mSUGRA (SU1)	264 + 262	6.3	18.0	6.9	7.2	1.3
	mSUGRA (SU2)	160 + 149	0.9	6.0	1.07	1.9	2.7
	mSUGRA (SU3)	219 + 218	13	17.7	11.5	7.7	11.5
	mSUGRA (SU4)	113 + 113	25	33.7	24.7	19.9	24.4

with same M, multi-lepton signals larger in seesaw II, III Note: seesaw signals not optimised (scaled from 30 fb⁻¹ analysis)

J.A. Aguilar-Saavedra

Chicago, July 21, 2009

Signals in many final states with 1 to 6 leptons

Only one triplet Σ / one doublet (N E) / one singlet N assumed for these numbers

Number of events	s after cuts			$30 {\rm fb}^{-1}$
	$\ell^\pm\ell^\pm\ell^\pm\ell^\mp$	$\ell^+\ell^+\ell^-\ell^-$	$\ell^\pm\ell^\pm\ell^\mp$	$\ell^{\pm}\ell^{\pm}$
Σ (M)	23.5	55.7	110.3	177.8
Σ (D)	19.8	173.4	194.4	4.4
(N E)	14.8	52.9	253.7	1.7
$Z'_{\lambda} + N(\mathbf{M})$	0.5*	22.0*	165.9*	156.1*
$Z'_{\lambda} + N$ (D)	0.7*	35.4*	325.0*	3.8*
SM bkg	12.1	14.3	15.9	19.5

Heavy leptons

B. Bajc, M. Nemevsek and G. Senjanovic, hep-ph/0703080

F. del Aguila, LI. Ametller, G.L. Kane and J. Vidal, Nucl. Phys. B 334 (1990) 1

		Tevatron $(M_{\rm L} = 100 \text{ GeV})$ $ \eta < 4$ $p_t > 10 \text{ GeV}$ No $M_{\ell\ell,\ell\nu}$ cut	UNK $(M_{\rm L} = 200 \text{ GeV})$ $ \eta < 4$ $p_t > 10 \text{ GeV}$ $M_{\ell\ell,\ell\nu} > 100 \text{ GeV}$	LHC $(M_{L} = 500 \text{ GeV})$ $ \eta < 4$ $p_{t} > 50 \text{ GeV}$ $M_{\ell\ell, \ell_{P}} > 200 \text{ GeV}$	SSC $(M_{L} = 500 \text{ GeV})$ $ \eta < 4$ $p_{t} > 50 \text{ GeV}$ $M_{\ell\ell, \ell\nu} > 200 \text{ GeV}$
l l jjjj	E	0.01	0.5	1	5
	$\binom{N}{E}$	0.9	18	54	239
ℓ v jjjj	Ĕ	0.02	0.9	2	9
	$\begin{pmatrix} \mathbf{N} \\ \mathbf{E} \end{pmatrix}$	_	_	_	
<i>l l l v</i> jj	E	7×10^{-4}	0.03	0.08	0.3
	$\begin{pmatrix} N \\ E \end{pmatrix}$	0.4	5	17	72

Summary. II

Independently of the heavy neutrino character EWPD require

Heavy Majorana neutrino

Chicago, July 21, 2009

N production with extra interactions

4000

3000

2500

2000

1500

 $M_N > M_{W_m}$

$$pp \rightarrow W_R \rightarrow eN \rightarrow eejj$$

Observable for M_{WR} and M_N up to 3.5 TeV and 2.3 TeV for $L = 30 \text{ fb}^{-1}$

S.N. Gninenko, M.M. Kirsanov, N.V. Krasnikov and V.A.Matveev, Phys. Atom. Nucl. 70 (2007) 441

Chicago, July 21, 2009

Scalar triplets

Scalar masses up to 800 GeV can be discovered at LHC for a L = 30 fb⁻¹

A.Hektor, M. Kadastic, M. Muntel, M. Raidal and L. Rebane, 0705.1495 [hep-ph]

Chicago, July 21, 2009

Fermion triplets

B. Bajc, M. Nemevsek and G. Senjanovic, hep-ph/0703080

F. del Aguila, LI. Ametller, G.L. Kane and J. Vidal, Nucl. Phys. B 334 (1990) 1

		Tevatron $(M_{\rm L} = 100 \text{ GeV})$ $ \eta < 4$ $p_t > 10 \text{ GeV}$ No $M_{\ell\ell,\ell\nu}$ cut	UNK $(M_{\rm L} = 200 \text{ GeV})$ $ \eta < 4$ $p_t > 10 \text{ GeV}$ $M_{\ell\ell,\ell\nu} > 100 \text{ GeV}$	LHC $(M_{L} = 500 \text{ GeV})$ $ \eta < 4$ $p_{t} > 50 \text{ GeV}$ $M_{\ell\ell, \ell_{P}} > 200 \text{ GeV}$	SSC $(M_{L} = 500 \text{ GeV})$ $ \eta < 4$ $p_{t} > 50 \text{ GeV}$ $M_{\ell\ell, \ell\nu} > 200 \text{ GeV}$
l l jjjj	E	0.01	0.5	1	5
	$\binom{N}{E}$	0.9	18	54	239
ℓ v jjjj	Ĕ	0.02	0.9	2	9
	$\begin{pmatrix} \mathbf{N} \\ \mathbf{E} \end{pmatrix}$	_	_	_	
<i>l l l v</i> jj	E	7×10^{-4}	0.03	0.08	0.3
	$\begin{pmatrix} N \\ E \end{pmatrix}$	0.4	5	17	72

Other model dependent neutrino signals at large colliders

W. Porod, M.Hirsch, J.C. Romao and J.W.F. Valle, hep-ph/0011248

Ratio of neutralino branching ratios as a function of the atmospheric mixing angle

Chicago, July 21, 2009

S. Bar-Shalom, A. Rajamaran, D. Whiteson and F. Yu, 0803.3795[hep-ph]

$$\mathcal{L}_{FV} = \xi_{ij} \bar{Q}_{iL} \tilde{\Phi}_{FV} u_{jR} + h.c. , \qquad ug \to t\eta^0 \to tt\bar{u} + h.c. , \\ u\bar{u} \to \eta^0 \eta^0 \to tt\bar{u}\bar{u} + h.c. , \\ uu \to tt + h.c. ,$$

	$M_{\eta^0} \; [{\rm GeV/c^2}]$	180	190	200	225	250	300
	σ [pb]	0.50	0.45	0.41	0.33	0.27	0.19
tt	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	4.8	4.4	4.1	3.3	2.6	1.8
	σ [pb]	0.54	0.50	0.42	0.28	0.22	0.10
$tt\bar{u}$	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	5.3	4.9	4.3	3.0	2.4	1.1
	σ [pb]	0.68	0.45	0.38	0.17	0.06	0.02
$tt\bar{u}\bar{u}$	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	6.4	4.7	4.1	1.8	0.7	0.2
Total	$N(l^{\pm}l^{\pm}b\not\!\!E_T)$	16.5	14.0	12.5	8.1	5.7	3.1

Chicago, July 21, 2009

S. Bar-Shalom, G. Eilam, T. Han and A. Soni, 0803.2835[hep-ph]

$$\begin{split} &\sigma(pp\to\mu^+\mu^+W^\mp)\ \sim\ \sigma(pp\to\mu^+N)\times BR(N\to\mu^+W^-)\ ,\\ &\sigma(pp\to\mu^+\mu^+H^\mp)\ \sim\ \sigma(pp\to\mu^+N)\times BR(N\to\mu^+H^-)\ , \end{split}$$

m_N	m_{H^+}	$pp \rightarrow \mu^+ N$	$pp \to \mu^- N$	$N \to \mu^\pm W^\mp$	$N \to \mu^\pm H^\mp$	$pp \rightarrow \mu \mu W$	$pp \rightarrow \mu \mu H$
$[\mathrm{GeV}]$	$[\mathrm{GeV}]$	σ [fb]	σ [fb]	BR	BR σ [fb]		σ [fb]
100	80	155.6	106.9	0.008	0.49	2.1	128.6
150	120	29.4	18.9	0.022	0.46	1.1	22.2
200	150	10.4	6.3	0.02	0.47	0.33	7.9
220	200	7.4	4.4	0.07	0.25	0.83	2.95

Summary. III

- Heavy Majorana neutrino coupled to muons: V_{eN} a factor 2 better at LHC, but
- new EWPD analysis reduces V_{eN} by a similar factor. Moreover, a complicated cancellation is needed not to disturb light neutrino masses.
- Heavy Dirac neutrino can not improve indirect limits but they do not contribute to light Majorana masses. However, they have not LNV signals either.
- In both cases $|V_{eN}| < 0.007$ for m_N around 300 GeV at ILC, and a factor ~ 3 better for a several TeV heavy neutrino at CLIC.

Summary. IV

- In the presence of extra interactions these limits increase up to several TeV (no mixing suppression and resonance enhancement) for both heavy fermions and gauge bosons.
- Heavy scalar triplets can be observed at LHC for masses up to 800 GeV.
- Fermion triplets have similar discovery limits.

90 % C.L.

Fermion singlet $|V_{IN}| < 0.039$ $|V_{IN}| = 0.026, m_{h} = 121.5 \text{ GeV}$ Best value $\begin{cases} 2 (Y_{\Delta})_{e\mu} (Y_{\Delta}^{+})_{\mu e} M_{\Delta}^{-2} \\ |(Y_{\Delta})_{e\mu} M_{\Delta}^{-1}| < 0.47 \text{ TeV}^{-1} \end{cases}$ Scalar triplet $\mathcal{O}_{\phi}^{(3)} = \left(\phi^{\dagger} D_{\mu} \phi\right) \left(\left(D^{\mu} \phi\right)^{\dagger} \phi \right) \begin{cases} 4 \left|\mu_{\Delta}\right|^2 M_{\Delta}^{-2} \\ \left|\mu_{\Delta} M_{\Delta}^{-2}\right| < 0.043 \text{ TeV}^{-1} \end{cases}$ **Fermion triplet** $|V_{15}| < 0.018$ $|V_{15}| = 0.015, m_{h} = 116.2 \text{ GeV}$ Best value

Light neutrino masses and mixings

 $m_{\beta} = \sqrt{\sum_{i} m_{i}^{2} |U_{ei}|^{2}} < 2.2 \text{ eV} \qquad 95\% \text{ confidence level (CL)}$

$$\Delta m_{21}^2 = 7.67 \substack{+0.22 \\ -0.21} \binom{+0.67}{-0.61} \times 10^{-5} \text{ eV}^2,$$

$$\Delta m_{31}^2 = \begin{cases} -2.37 \pm 0.15 \binom{+0.43}{-0.46} \times 10^{-3} \text{ eV}^2 & \text{(inverted hierarchy)}, \\ +2.46 \pm 0.15 \binom{+0.47}{-0.42} \times 10^{-3} \text{ eV}^2 & \text{(normal hierarchy)} \end{cases}$$

$$|U|_{3\sigma} = \begin{pmatrix} 0.77 \to 0.86 & 0.50 \to 0.63 & 0.00 \to 0.22 \\ 0.22 \to 0.56 & 0.44 \to 0.73 & 0.57 \to 0.80 \\ 0.21 \to 0.55 & 0.40 \to 0.71 & 0.59 \to 0.82 \end{pmatrix}$$

M.C. Gonzalez-Garcia and M. Maltoni, 0704.1800 [hep-ph]

Chicago, July 21, 2009