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Abstract

A major concern in the use of heavy ion beams as igniters in pellet

fusion systems is the vulnerability of the beam to the transverse flamenta

tion instability. The undesirable consequence of this mode is the transverse

heating of the beam to the extent that convergence on the pellet becomes

impossible. This work considers the case of a beam injected into a gas filled

reactor vessel, where finite pulse length and propagation distance play an

important role in limiting growth. Two geometries are analyzed: a non

converging case where the radius at injection is nearly equal to the desired

radius at the pellet, and a converging case in which the injection radius

is large and the beam is pre-focused to converge at the target. It is found

that a cold beam will be severely disrupted if the product of the magnetic

plasma frequency and the propagation distance is much larger than unity.

This product may be lowered by dividing the energy of the original beam

into many (=50) individual beams arranged to converge simultaneously at the

pellet, however this represents a significant engineering complication. Even

if this product is large, growth may be limited to about six e-foldings

if enough transverse velocity spread is added that the latter half of the

pulse propagates in pinched equilibrium. The disadvantage of this mode is,

however, that much of the pulse is lost to thermal expansion.

Introduction

Among the critical issues confronting the use of heavy ion beams as

pellet igniters is whether such a beam can propagate through the reactor

vessel to finally achieve a spot size of the order of 1 mm on the pellet.

Assuming the beam can be directed to strike the target, this final spot
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size will not be obtainable if the beam has been subjected to any of various

instabilities which transversely heat it at the expense of its longitudinal

energy. The most serious of these appears to be the filamentation insta

bility, in which modes of transverse wave number k can grow with character-

i st i c times T m = 4rrcr/ c2k2, where cr denotes t he conduct i vi ty of the backg round

plasma. The use of a low pressure (ng.::::: 1012 ) vessel environment and/or many

(""50), simultaneous, low current beams would allow each beam to be magnet

ically stiff and hence stable over the entire distance of flight. This

approach, however, places constraints on the reactor system and suggests the

examination of unstable growth in the high pressure (ng ::::: 1016 ) regime. This

report is a summary of the results of a more comprehensive treatment given

elsewhere1,2 of filamentation growth in converging and non-converging beams

of heavy ions in a background plasma of finite conductivity.

The basic mechanism of the filamentation instability is that a beam

which is given small transverse mode structure will separate into small

beamlets as the result of the attraction of parallel currents. If the beam

is moving in a background plasma such that charge neutralization can occur,

each beamlet will continue to self-pinch until its magnetic pressure B2/8rr

becomes equal to the transverse thermal pressure Yn (1/2 mVt h2). If we

define ~ to be the ratio of thermal pressure to pinch pressure for a filament

in the instant just after the perturbation, we conclude that 11:::::1 should

be required for successful propagation. For ~ < 1. the filament will pinch

at a rate, ( n) proportional to the square root of the ratio of the magneti c

force per unit length to the mass per unit length. A maximum growth rate

occurs for a filament whose radius is less than or equal to the magnetic

skin depth of the pulse and takes the value nmax = n
b

= (4,,-q2 nj )'mc2)1/2
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where n b is just the magnetic plasma frequency divided by \'c. If the beam

is to propagate a distance L, then the total number of e-foldings of growth

is a= nbL. In light of these observations, we can take Q' and 11 as two

dimensionless characterizations of the beam and its filamentary tendencies.

Non-Converging Case

In the previous treatment of the non-converging beaml the equilibrium

distribution function fo = noF(!) H(T) H(Tp-T) and the equilibrium vector

potential Ao are perturbed by the form

where z is the longitudinal variable measured from the reactor wall into the

chamber and T = t - z/f3c is a conven i ent t ran sformed time such that f3cT is a

longitudinal distance into a pulse of duration ~p as measured from the head.

We have assumed ~Ao = 0 and have let H(T) represent the step function. The

resulting dispersion relation is

where
2 f 2 F(v)

r (k ,n) = n b d v ""' 2
""' (n - ~.~ /13 c )

(2 )

(3 )

giving a growth exponent of

g(n,T,z) = inz (4 )

Several velocity distributions have been studied, the most convenient

being the single pole approximation to the Maxwellian:
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(5)

where 6(k) kVth/(ffnb~c). The dispersion relation becomes

iWT =m
(g ~-2

1 \n
b

+ ij (6 )

If T is held fixed and the growth factor g, given by Eq. 4, is maximized

with respect to z we obtain

(7 )

It is interesting to note here that the mode number dependencies of Tm and

6 leave gmax indepen~ent of k at fixed T. Further, if we assume a parabolic

profile for the beam current density J b and a conductivity independent of r

and arrange the thermal velocity so that the beam pinches half-way back from

the head (specifically we require that T)= 1 at T= Tp/2), then

T

g <~max - c2 Tu 111

6
= - (8)

If ~= 1 we obtain marginally severe growth but have sacrificed the first

half of the pulse to rapid expansion.

Converging Beam

We consider next a geometry in which the pulse converges from a large

radius at z = a to the chosen target radius at z = L. We perturb away

from straight line converging particle orbits. The unperturbed system
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is characterized by ~Ao = 0 and distribution function fo which is of finite

extent and uniform in.the tranverse plane, fo is normalized to density

nw at Z = o. The problem of characterizing fo is simplified by noting that

'i = Y... (1 - z/L) + .q. (9)

is an integral of the unperturbed motion which displays the assumed convergence

at z ::; L; thus we consider fo = nw F (~). The density at arbitrary z is then

no(z) = fd2v f = fiv n F(V) = n
w 2 f d2

V F (y) =
"" 0 "" w "" (1- [) ""--

The mean squared thermal velocity is then

n
w -(10)

(1- ~)2
L

2
vth(z) (11)

2where vth (0) is the initial mean squared thermal velocity assumed independent

of r.

To parallel previous work we have

af1I~C-'::l- + V • v f 1 = - .lli2 VA V f or-- vZ - "" YM- 1 • ""v

We proceed in the conventional way by formally solving Eq_ (12) for f1:

(12 )

(13 )
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Zl
(14 )

where flO is the initial disturbance carried along the unperturbed orbits.

Recall that both V and v were constants of the motion; hence if we introduce
""- --

u(z) = (1 - r)-l we can write Eq. (9) as

;~cy = y / u(z) + L r = constant

Then any point along an unperturbed orbit can be described by

~(z') U(ZI) = r (z) u(z) + -l V [u(z') - u(z)]
~ ~c -

We then select a perturbation with r dependence of the form

(15)

(16 )

-c- (u' - u)] (17 )

to obtain the perturbed distribution function with proportionality

constants Al and J"b :
1

du'-----=A' exp [;u~·r +
(u,)2 1

(u'-u)] • (18 )
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The perturbed current ;s then

(_q2_~_n"';";"'WL_u_2) fd2V i k. ~fu du I AI exp [iuk.r + i~.~L (u I_ U)] (19)
'Y m - - ay 1 (u' ) 2 1 - - c ~

We may reverse the order of integration and integrate by parts on V to get.......

where

4rr - 2j;U 1\
2 2 (J b _ J b ) = a due A'(u-U ' ) F,

ck u 1 10 1

- 2
A = A1/u ,

Lk
A = (u-U l )-=

~c

1\ }2F::; d ~ F(~) exp(-i~·Y) •

(20)

If we now apply the assumed form of Eq. (17) and the definitions above to

Eq. (13) we obtain for the perturbed field

(21)
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Finally if we define an amplitude X proportional to the perturbed density,

and a source S as

then Eqs. (20) and (21) can be written. as

u2 A + T ~ A = X
m OT

(22)

(23 )

Cold Converging Beam

We first solve Eqs. (22) and (23) for the cold limit, where
A

F(y) = 6(~) gives F(~) = 1. Then differentiation of Eq. "(22) twice gives

(24 )

If we further let Tm-O either because <f-Q or k-oo then Eq. (23) becomes

!
The solution is x+= u where

(25)

(26 )
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The cold converging beam thus displays algebraic growth with distance rather

than the exponential growth found for the straight beam. The magnitudes of

growth, however, are quite similar over the distances of interest.

When T m is finite growth is reduced. This can be seen by application of

the Laplace transform in the variable

and similarly for A. The system (22) and (23) combine to give

The WKB solutions, good for large a, are

-
X

lu + (u 2+ pTm) 1/2 ]

1 + (1 + T )1/2P m

+a

.(28)

We take the initial conditions to be

0 T< 0

X(u=l) a x (u=l)and - = 0au
1 T> 0

2
We can approximate the inversion integral in the limit f u T » 1 and0-Tm
T

« 1 with a saddle analysis to obtain X oc exp [gJ whereTm
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(} 8 r. T 1/2Jg ;:; "2 [1 + 1n (-0) ] + (} 1nLU (Tm) (29)

The gross consequences of a non-constant background conductivity may be

obtained by using a model in which conductivity rises as the inverse square

of beam radius

(30)

This is viewed as an attempt to model generation of conductivity proportional

to beam intensity. Eq. (27) becomes

(31)

with WKB solutions

(32)

A saddle analysis of inversion integral yields X a: exp (g) where

(33)

which is exactly the cold non-converging result withrlbZ - O'ln u.

Warm Converging Beam

Solution of Eqs. (22) and (23) for arbitrary choices of F(~) is in general

quite tedious, but we may obtain the" overall features by the use of a single

pole form of F(~). This procedure yields
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1\
FL = exp [ - K(u-u l

)] (34 )

where K is a constant proportional to the thermal velocity. It may be shown

that an arbitrary F(y) can be approximated in single pole form with

f BF
1 ~2c2 2 ~ • av--= dV -222 . - k· VK k L --

(35 )

It is this fact that lends wide applicability to this somewhat unphysical form,

for now Eq• (22 ) can be writt en as

2{U , -K(u-u ' )
X = S + 0:' J 1 du I A (u-u I )e (36)

When the factor exp [K(u-l)] is absorbed into X, S, and A, the equation returns

to its cold form (already solved.) We can write the solutions

_ -K(u-l)
X - Xcol d e

For a Maxwellian profile K = 0:'6 •

In the limit of low conductivity (Tm-O), we use the results of

Eq. (26) with O:'large to get:

0:' -0:'6(u-l)
X ~ u e

(37)

(38)

Note that, in contrast to the straight beam case in this limit, the growth
1here reaches a maximum at u = 6. This feature appears ~onsistently

in the warm beam analysis and is due to transverse phase mixing of beam
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particles. As a result we should expect total growth of a warm beam to

be somewhat less than the growth of the corresponding cold beam case. For

instance, if we consider the case of T m finjte we can proceed as before

with the exception that, following the saddle point evaluation, we maximize

the warm growth rate

g - g - 0'0 (u-1)warm - cold (39 )

with respect to u, k, and T. We find that growth is a maximum for k=o, u=ro,

T=T but with the product uk finite. Defining the quantity Q = 0'1l/24, wep

find

9max =*2Q [ Q - (Q2+1)1/2 + In ((Q2+1)~/2 + 1)1
11 - T2Q 2 for Q » 1

6
= -

II
2Q[1 n(~) -1] for Q « 1

Q

(40)

Observe that growth is less than the cold beam value of 6/1l for all

values of 0' andll.

Finally, for Tm oc u2 we proceed as before, but find that gmax can be written

only as an implicit function of Q. r~aximum growth st~"l occurs at T= Tp

however, and is found to be everywhere less than that for the converging, con-

stant conductivity case treated above. In particular,. for Q « 1 we can

approximate
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It is obvious that the last two expressions are similar, at least in

leading approximation, hence we adopt the general form

6
gmax = ~ f (0'11/24) (42)

where the specific form of f depends on the precise situation. With th~ above

results of Eqs. (40) and (41) we can characterize f in two limits

f 0'11- 00) = 1

f 0'11 { 1 }0' 11 - 0) = 12 1n 0'11 + C
(43 )

The constant C depends on the specific model but can be taken as approximately

2.2. Clearly, a non-converging beam must have 11:=:::1 in order to propagate

in equilibrium, giving only a few e-folds of growth during transit. For a

converg i ng beam, however, 11 inc rea ses proport i ona1 to (J / q2 where q is the

effective ion charge. For the beam to pinch at the pellet, 11 must be

unity there. At the wall then, 11 must be much smaller and bounded by

(44 )

where the minimum is taken over the converging profile. There is considerable

growth, then, early in transit and it can be approximated when the conductivity

ratio is high from Eq. (43):

2
ln [(o"/q ;pellet ] + 2.2

(a-;q )min
(45 )
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Values of aless than unity could not yield large effects under extreme

assumptions on conductivity development. Conversely it seems unlikely

that a > 5 could be tolerated even if ~/q2 varied by only a factor of 10.

One suspects that a ~ 3 represents an effective bound for the converging

beam. From our definition of a = rlbL we should expect, then, a maximum

transported energy of

where A and l are the atomic mass number and stripped charge for the beam

(46 )

particles, Ro is the rms radius of the beam at z=o and L is the chamber

radius. The beam is assumed to have a parabolic profile with edge ao = {3Ro

and central density n = 2Ib/q~cTIa2. If we take Tp = 10 ns, All = 4,

RoiL = 10-2, and ~= 0.3 we find

W< 0.021 MJ

A total of 50 beams would be required to put 1 MJ on the target placing

formidable complications in the way of reactor system design.
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