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Studies of a Beam Line for Transport to a Target
A. Garren

Lawrence Berkeley Laboratory

Introduction

An example beam line for transport of a 10
GeV U+4 beam from a periodic lattice to a 4 mm

target has been designed by K. Brown and J.
1Peterson for the zero space charge case. Two

variants of this line exist: a straight 60 m

four quadrupole module without chromatic

corrections, and a line with three of these

modules including dipoles and sextupoles for
chromatic correction.

As an approach to some of the problems of

final vacuum transport of intense beams, this

note describes calculations to modify the beam

line of Brown and Peterson to take account of

space charge, and to assess its performance with
respect to momentum spread and intensity

variation along the bunch.

Secondly a computational program is outlined

for design of the sextupole chromatic correction

system of beams with space charge, including a
way to obtain their dispersion.

Beam Line Without Sextupole Corrections

The beam line to be considered is exhi

bited in Fig. 1 and Table I. On the left is a

periodic FOOO cell lattice, to the right a

transport channel that focusses the beam onto
the target. The cells are 4 m long, with 1 m

long quadrupoles and 1 m long drifts. The

gradients are such as to produce ~ = 60 degrees
o

betatron phase advance at zero current.

The system is intended for the 10 MJ case:
+4

U K.E. = 10 GeV, target radius a = 4 mm.

rhe current I is 780 A (electrical), which

depresses the phase advance to ~ = 24°. (Many

such beams are required to deliver the needed
tota1 energy).

Table 1 Lengths and quadrupole gradients of the last half
cell and final focus transport line for 10 GeV,
U+4 beams at three current levels.

Gradient (TIm)

Element Lenqth (m) OA 390A 780

Q 0 3. 194 x 10-4 6.387 x 10-4

QO/2 0.5 -34.44 -34.44 -34.44
L 1..0

QF/2 0,.5 34.44 34.44 34.44
L1 2 .. 0
Ql 1.0 1.84 -5.55 -14.86
L2 13 .. 0
Q2 LO 0.0 5.33 9.53
L3 11..5
Q3 1..0 -3.64 -5.50 -7.16
L4 10.,0
Q4 1..0 0.0 7.39 4.95
L5 8.5
Q5 2.0 5.91 5.96 5. 14
L6 2.0
Q6 2.0 -7.88 -7.58 -8.53
L7 5.0
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The following calculations were performed,
using the SYNCH computer program:

1. Periodic solutions to the equations for the

beam envelope radii ax' ay

were obtained for the cells. Here

K = (dB/dx)/Bp, E are the emittance areas dividedx,y

3. The envelope equations (1) are tracked

through the channel to the target, using the

cell periodic solutions as starting
conditions. An optimizing routine adjusts

the gradients to obtain the desired

conditions at the target:

cell transfer matrices are obtained from the

final values of rays with initial values (1,0)

or (0,1~ and then the tunes are obtained from
the matrix traces.

( 1)oE2
x,y - Q

-a-3-- ax + ayx,y

by 7f, ax = ay = 4 mm,

Q
4r p q2 N

= 1.288 x 10-7~
Aa 2y3 A(ay)3

where N is the number of ions per unit 1ength

and is the current in amperes.

(2 )

Additional constraints were added to limit the

maximum beam radii. Two quadrupo1es were added,
so that the maximum radius along the channel

increased only from 25 CIII in the zero-current

line to 35 cnl in the rilOdifieu line with 780 A.

2. The tune depression is calculated as

follows. Single particle rays are integrated
using

( \
Q '\

+ ± K - A (A + Ay}J' (x,y)
\ x,y X
\

o,

The principal results are shown in Table II.

Chromatic Behavior of the Example System

An approximate estimate of the increase in

spot size to be expected from the final doublet

Table II Properties of 10 GeV, U+4 beams in FOOO cells
and final transport channel at three current levels

Current (electrical) 0 390 780

Space charge parameter Q 0 3.19x10-4 6.39x10-4

Cell phase advance ~ 60 36.7 24.4

Ce 11 beam radius max. amax 1.99 2.51 3.06

Cell beam radius min. amin 1.20 1.55 1. 91

Ch anne1 phase hor. ~x 180 115 91

Ch anne1 phase vert. ~y 180 152 156

Channel radius max. ax 24.8 28.7 35.5

Ch anne1 radius max. ay 16. 1 30.0 30.4

Target beam radius a* 0.40 0.40 0.40

Relative velocity B 0.291

Relative momentum By 0.304

Magnetic rigidity Bp 56

Emi ttancehT E 60

Amp.

deg.

cm.

cm.

deg.

deg.

cm.

cm.

cm.

T-m

mm-mrad
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*Specifically one sets Mll = 0 in both

planes. The 62 term is larger than the 6 term
( )2 -3if 6 > 60/L - 10 for the example beam

1i nee

Here L is the distance from the final lens to

the target, and £ is the doublet separation. If

the maximum 6 is taken to be that which doubles
a (40% increase in r ), and we take the meano
of the horizontal and vertical values of
2M12 we get

ignoring space charge may be obtained using the

thin lens approximation. If the beam has a waist

at the target and is nearly parallel at the

doublet entrance, it can then be shown* that the

B-function at the target depends on momentum
deviation 0 = 6p/p as

(7)

2 m

2

(
tlp \ = ± r 0
P J max -2-€-·j(7-":(L:::::=:::+=-=i:::::')=(=L=+=2=£==)

For the example beam line L = 6 m, £

and (tlp/p)max = +0.011%

To estimate the chromatic effect of the

example beam line more accurately, beam en

velopes were tracked through the system for

off-momentum particles. In this calculation K
in Eq. (1) is made proportional to (1 + 6)-1

and Q to (1 + 6)-2. The calculation is

inexact in that the denominator of the space

charge term should contain the effective size of
the beam due to superposition of the different

momentum components. However the space-charge

term is more important than the emittance term

at places where the beam sizes are large, and

there the dependence of a and a onx y
momentum is relatively small. Hence the

results, shown in Table III, may not be too
inaccurate.

(6 )

(5 )60(0) ~ 60 [1 - 45 + (2M12 0/60)2]

where Mis the transfer matrix from doublet
2entrance to target, ao = ro/€, and

Table III Effect of Momentum Error on Channel Performance

Momentum deviation tlp/p -0.01 0 0.01
Q = 0:

Radii at channel entrance ax .020 .020 .012 m
(axl=ayl=O) ay .012 .0120 .012 m

Radii at target position: ax .0072 .0040 .0073 m
ay .0044 .0040 .0043 m

Waist position
(from target) Sx -0.04 0 +0.04 m

Sy -0.1 0 +0.1 m

Radii at waist ax .0038 .0040 .0043
ay .0041 .0040 .0040

Q = .0000639:

Radii at entrance ax .0307 .0306 .0306
ay .0190 .0191 .0192

Radii at target a .0235 .0040 .0199x
ay .0054 .0040 .0037

Waist position Sx -1.0 0
Sy -0.1 0 +0.1

Radii at waist ax .003 .004
ay .005 .004 .003



It was assumed that each momentum con

stituent was matched in the cells -- this

accounts for the variation of radii ax' ay
at the channel entrance. For the zero space

charge case the horizontal beam size has

increased from 4 to 7 mm at the target for ± 1%

momentum error, the vertical size hardly at

all. The spot area a a increases by ax y
factor of 2, while from Eq. (5) one predicts a

factor 1.4. For 780A the area at the target is

increased by a factor of six.

Thus the theoretical momentum acceptance for

zero current is about ± 1% , for the channel
example 0.7% at zero current and about 0.2 at
780A. The increased sensitivity at 780A may not

be directly due to space charge, but rather to

increased chromaticity, which varies as L Ki13i .
It may be possible to reduce this effect by more

careful design of the channel.

Sensitivity to Current Level

The change of the beam radii at the target

as a function of current was calculated by

tracking envelopes through the channel whose

quadrupole gradients were fixed at values to

focus the 780A beam to 4 mm radii at the

target. As with the momentum dependence
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calculations, matched envelopes in the periodic

lattice were taken as initial values in the

channel. The results, Table IV, show higher

tolerance to current than to momentum

variation. For example the current must be

depressed about 20 % to produce a 50 % growth of

spot-radius.

Evaluation of Example Beam-Line

The resulting beam-line appears satisfactory
in that it produces the desired spot size, the

beam dimensions are reasonable, and it is not

too sensitive to current variations. However

its momentum acceptance is very small and it may

behave badly with ~ore realistic distributions.

Work is now in progress to produce a superior

channel. The main ideas are to increase the

density of quadrupo1es so that their focussing

effect will dominate the space-charge effect, to

produce beam envelopes that are on the average

more symmetrical~ and to avoid very small

intermediate waists, such as that near 03.

Dispersion in Beam with Space Charge

A beam line with sextupole corrections was
1also calculated by Brown and Peterson. It

Table IV Dependence of Spot-Size at Target on Current

0
0

= 6.387xlO-5 ((1
0

= 780A)

O/Qo

o
O. 1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.925
0.95
0.975
1.0
1.025
1.05
1.075
1. 10

ax(mm)

64. 1
51. 5
40.1
30.2
22.5
16.9
12.6
9. 12
6.42
4.62
4.35
4. 16
4.05
4.02
4.06
4. 17
4.33
4.53

ay(mm)

26.0
27. 1
27.7
24.8
19.0
14.0
10.3
7.69
5.88
4.66
4.45
4.26
4.12
4.00
3.92
3.87
3.85
3.86
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consists of three modules like the channel shown

in Fig. 1 with the center one reflected.

Dipoles and sextupoles are placed in the first
two modules for chromaticity corrLction. In

this section an approximate method to calculate

dispersion in beams with space charge will be

outlined, which should be useful in calculating

sextupole corrections.

Suppose each momentum component of the beam

has a K-V distribution with ellipse axes ax'
a. Let there be a rectangular distribution
y

in momentum deviation 0 = ~p/p, -~ < 0 <~. If

the dispersion (to be calculated) is n, then the
horizontal beam dimension will be

d2X
( K - A (A Q+ a )) X

0 (9 )-+
ds2 x x y, p

d2y
( -K a (A Q+ a ) ) Y = 0 (10 )-+

ds2 y x y

where p is the local radius of curvature and X,

Yare taken relative to the center of the beam.

Decomposing the horizontal motion relative to
the center of each momentum constituent,

( 11 )

gives the following equations in place of Eq. (9);

We treat the resulting beam as a uniform

density ellipse with axes Ax' ay• Single
particles will then follow the equations

+ (. K - A (A Q+ a ) \ x = 0
x x y)

+ \ K - Ax(A
x

Q+ a
y

) ) n = ;

( 12)

(13 )
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Fig. 1 Final Transport System for 10 GeV, U ~4 Beams. Beam envelopes

and quadrupole gradients designed for zero currents (dashed curves,

open bars) and for 780A (solid curves, cross hatched bars).

Beam is focussed to 4mm radius waist at 60m, the target position.



The beam evolution is traced by simultaneously
integrating Eqs. (13), (14), (15) with Ax

given by (8). Single particle behavior can be
obtained by also integrating Eqs. (10) and

(12). For a periodic lattice one must find
periodic solutions in a , a , and n.x y

Equations (10), (12) lead to the envelope

d2a Qa x
2

__x + Kax
EX

0
ds 2 - A (A + ay)

a~x x

o

equations

(14)

( 15 )
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estimate the non-linear forces arising from this
distribution. If these do not seem serious, it

may be possible to apply sextupole chromatic
corrections. To calculate these, appropriate

non-linear kicks can be applied at the sextupole
locations and a set of single rays traced

through the system corresponding to a small 0

value together with a non-zero initial value of
I I

either x, x , y, or y. The initial and

final values of these rays give the second order

transport coefficients T" "6' where i and j =
lJ

1, 2, 3, 4. The correction consists of reducing
the largest of these coefficients to zero.

It is assumed in the above derivation that

the momentum of individual particles does not
change significantly and that particles do not

move longitudinally to parts of the bunch with

very different momentum spread 6 during the

period of interest.

After carrying out the integrations, one

should estimate the true charge distribution

resulting from superposition of the beamlets and
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