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Space charge induced coupling between different degrees of free­

dom can be responsible for emittance growth or transfer of emit­

tance from one phase plane to another. The underlying instability

mechanism is coherent if it depends primarily on the electric

field due to the collective motion, in contrast with an incohe­

rent growth that can be described as a single particle effect.

Such coherent phenomena become increasingly important if one

studies beams where the space charge force is no longer negli­

gible compared with the external focusing force, as in Heavy Ion

Fusion applications.

In this note we present results of analytic calculations on the

coherent space charge instabilities of a beam with initial

Kapchinskij-Vladimirskij distribution and unequal emittances,

rsp. average energy in the two transverse phase planes x-Px and

y-p . We note that in computer simulation calculations evidence
y

has been given for rapid emittance transfer to occur if the ini-

tial emittances E ,E are noticeably different 1,2). We have
x y

not attempted to make a quantitative comparison of our results

with those from computer simulation. The main purpose of this

study is to give some insight into the instability mechanism,

the dimensionless parameters that characterize the situation and

the growth rates one may expect to find.

Dimensionless Parameters

For the round beam case with equal emittances, which was studied

by Gluckstern 3), stability is described by one single parameter,

the space charge depressed tune vivo. For the anisotropic beam

three parameters are required, instead, which we have chosen to

be

1 P. Lapostolle, this ~~rkshop

2 R. Chasman, IEEE Trans.Nucl.Sci., NS-16, 202 (1969)
3 R.L. Gluckstern, Proc.of the 1970 Proton Lin.Acc.Conf.,

Batavia, p.811
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Results

The dispersion relation has been calculated by integrating the

Vlasov equation along unperturbed orbits (details see elsewhere 4 ).

Eigenmodes of the perturbed electrostatic potential V can be

written as finite order polynomials in x, y with a distinction

between "even" and "odd" (as describing the symmetry in the angle

if elliptic coordinates are introduced):
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Anisotropy lowers the stability threshold considerably. Instabi­

lity occurs as a result of (linear) mode coupling or depression

of :2 to zero and negative values. Modes that are stable in a

round beam for arbitrary tune depression, like the sextupole

mode (Fig.1a), can become unstable with anisotropy. A general

rule of stability in terms of n, 0. has not been found. It may be

of interest to note that we have calculated a number of cases

and found that imbalance in energy as well as in emittance can

give rise to instability. As a general feature, however, insta­

bilities with noticeable growth rates were found only if the

tune in one of the directions is sufficiently much depressed.

A lower bound of .75 for the two depressed tunes seems to be

qUite safe from this point of view. Future work should consider

non-KV distributions and r-z ellipsoidal geometry.

4 I. Hofmann, to be published
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Figures;

The normalized mode frequency 0 = wlvx is plotted against

intensity I. In case of complex solutions Re 0 is shown by

a dashed line and Im 0 (instability growth rate) by a dotted

line. Examples are given for even modes and for different

sets of a, n, which are readily converted into the ratio of

emittances, E IE = n2 /a, and the ratio of single particle
x y 2 2

energies E IE = n la .x y
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