Coherent Space Charge Instability of a Two-Dimensional Beam
 Ingo Hofmann
 Max-Planck-Institut für Plasmaphysik

Space charge induced coupling between different degrees of freedom can be responsible for emittance growth or transfer of emittance from one phase plane to another. The underlying instability mechanism is coherent if it depends primarily on the electric field due to the collective motion, in contrast with an incoherent growth that can be described as a single particle effect. Such coherent phenomena become increasingly important if one studies beams where the space charge force is no longer negligible compared with the external focusing force, as in Heavy Ion Fusion applications.

In this note we present results of analytic calculations on the coherent space charge instabilities of a beam with initial Kapchinskij-Vladimirskij distribution and unequal emittances, rsp. average energy in the two transverse phase planes $x-p_{x}$ and $y-p_{y}$. We note that in computer simulation calculations evidence has been given for rapid emittance transfer to occur if the initial emittances $\varepsilon_{x}, \varepsilon_{y}$ are noticeably different ${ }^{1,2)}$. We have not attempted to make a quantitative comparison of our results with those from computer simulation. The main purpose of this study is to give some insight into the instability mechanism, the dimensionless parameters that characterize the situation and the growth rates one may expect to find.

Dimensionless Parameters

For the round beam case with equal emittances, which was studied by Gluckstern ${ }^{3)}$, stability is described by one single parameter, the space charge depressed tune ν / ν_{0}. For the anisotropic beam three parameters are required, instead, which we have chosen to be

[^0]$\alpha \equiv \frac{\nu_{y}}{\nu_{x}}$ tune ratio; $I \equiv \frac{\omega_{p}^{2}}{\nu_{x}^{2}}$ intensity; $\quad \eta \equiv \frac{a}{b}$ excentricity with $\omega_{p}^{2}=4 q^{2} N /\left(v^{2} a b\right)$ the "plasma frequency" and a, b the x, y semi axi of the elliptic cross section uniformly charged unperturbed beam. The tune depressions are found as
$$
\frac{v_{x}^{2}}{v_{o x}^{2}}=\frac{1+\eta}{1+n+I}, \quad \frac{v_{y}^{2}}{v_{o y}^{2}}=\frac{1+\eta}{1+n+I \eta / \alpha^{2}}
$$
with $v_{o x} v_{o y}$ the zero intensity tunes.
Results
The dispersion relation has been calculated by integrating the Vlasov equation along unperturbed orbits (details see elsewhere ${ }^{4}$). Eigenmodes of the perturbed electrostatic potential V can be written as finite order polynomials in x, y with a distinction between "even" and "odd" (as describing the symmetry in the angle if elliptic coordinates are introduced):

[^1]
Figures:

The normalized mode frequency $\sigma \equiv \omega / \nu_{x}$ is plotted against intensity I. In case of complex solutions $\operatorname{Re} \sigma$ is shown by a dashed line and Im σ (instability growth rate) by a dotted line. Examples are given for even modes and for different sets of α, η, which are readily converted into the ratio of emittances, $\varepsilon x^{/ \varepsilon} y=\eta_{2}^{2} / \alpha$, and the ratio of single particle energies $E_{x} / E_{y}=\eta^{2} / \alpha^{2}$.

[^0]: P. Lapostolle, this workshop
 R. Chasman, IEEE Trans.Nucl.Sci., NS-16, 202 (1969)

 3 R.L. Gluckstern, Proc. of the 1970 Proton Lin.Acc.Conf., Batavia, p.811

[^1]: 4 I. Hofmann, to be published

