CALCULATIONS OF MAJOR 3RD ORDER GEOMETRIC ABERRATIONS FOR FINAL TRANSPORT LINE
Eugene Colton
Argonne National Laboratory

Karl + Brown and Jack Peterson have presented a Final Transport Line for $10 \mathrm{GeV} \mathrm{U}{ }^{+4}$. The system consists of three $1 / 2$ wave quadrupole sections and three dipoles. Furthermore, the system has been chromatically corrected to second-order utilizing two families of sextupoles.

The system was designed to produce a final 4 mm radius spot in the center of a 5 m radius reaction chamber for a beam with a geometrical emittance of $60 \times 10^{-6} \pi \mathrm{~m}$-rad in both transverse phase planes; the starting ellipses in the phase planes are upright, viz

$$
x_{0}=2.04 \mathrm{~cm}
$$

$$
x_{0}^{\prime}=2.94 \mathrm{mr}
$$

1.177 cm

$$
y_{0}=1.177 \mathrm{~cm}
$$

$$
y_{0}^{\prime}=5.1 \mathrm{mr}
$$

The final transfer matrices, e.g. $\quad\left(\begin{array}{ll}C & S \\ C^{\prime} & S^{\prime}\end{array}\right)$
$\operatorname{are}\left(\begin{array}{cc}-0.197 & 1.11 \times 10^{-3} \\ 1.41 \times 10^{-2} & -5.07\end{array}\right) \quad$ in the \times plane (Horiz.)
and $\left(\begin{array}{cc}-0.3413 & 1.6 \times 10^{-4} \\ 7 \times 10^{-3} & -2.93\end{array}\right)$
in the y plane (Vert.).
where the primes denote differentiation with respect to s. So the system is point to point and waist to waist ($S=C^{\prime}=0$).

The third-order aberration coefficients for the system can be calculated by integrating the first-order functions over the transport.

An aberration coefficient for a quadrupole system is given by (see Steffen p. 52)

$$
\begin{equation*}
q=S\left(s_{e}\right) \int_{0}^{s_{e}} c(s) f(s) d s-C\left(s_{e}\right) \int_{0}^{s} S(s) f(s) d s \tag{1}
\end{equation*}
$$

where s_{e} is the end of the beam (the central trajectory propagates in the $+s$ direction), and f is the driving coefficient for the aberration. Since the system is point to point $\left(S\left(s_{e}\right)=0\right)$, we rewrite Eq. 1

$$
\begin{equation*}
q=-C\left(s_{e}\right) \int_{0}^{s} S(s) f(s) d s \tag{1'}
\end{equation*}
$$

The Transport run indicates that the large beam envelopes occur at very large S values (i.e., are built up only by the initial angles), therefore, we only consider the aberrations due to the initial angles x_{0}^{\prime} and y_{0}^{\prime} and not those involving the initital beam sizes x_{0} and y_{0}. The problem is reduced to a modest exercise of evaluating four aberrations instead of twenty.

The terms are

$$
\begin{aligned}
& \left(x \mid x_{0}^{\prime 3}\right)=-C_{x}\left(s_{e}\right) \frac{3}{2} \int_{0}^{s} e S_{x}{ }^{2}\left(K S_{x}^{\prime 2}-\frac{1}{18} K^{\prime \prime} S_{x}{ }^{2}\right) d s \\
& \left(x \mid x_{0}^{\prime} y_{0}^{\prime 2}\right)=-C_{x}\left(S_{e}\right) \quad \int_{0}^{S} e S_{x}\left[\frac{S_{x}}{2}\left(K S_{y}^{\prime 2}-\frac{1}{2} K^{\prime \prime} S_{y}{ }^{2}\right)-S_{y} S_{y}^{\prime}\left(K S_{x}^{\prime}+K^{\prime} S_{x}\right)\right] d s \\
& \left(y \mid y_{o}^{\prime 3}\right)=C_{y}\left(s_{e}\right) \frac{3}{2} \int_{0}^{S_{e}} S_{y}{ }^{2}\left(K S_{y}^{\prime 2}-\frac{1}{18} \quad K^{\prime \prime} S_{y}{ }^{2}\right) d s \\
& \left(y \mid x_{0}^{\prime 2} y_{0}^{\prime}\right)=C_{y}\left(s_{e}\right) \int_{0}^{s} e S_{y}\left[\frac{S^{y}}{2}\left(K S_{x}^{\prime 2}-\frac{1}{2} K^{\prime \prime} S_{x}^{2}\right)-S_{x} S_{x}^{\prime}\left(K S_{y}^{\prime}+K^{\prime} S_{y}\right)\right] d s
\end{aligned}
$$

where $K=0$ in a field free region
and $K=\frac{g}{B \rho}$ in a quadrupole where g is the field gradient.
we integrate the terms involving $K^{\prime \prime}$ once by parts and assume $K^{\prime}=0$ at $s=0$ and at s_{e}

$$
\begin{aligned}
& \int_{0}^{s} e K^{\prime \prime} S_{x}^{4} d s=-4 \int_{0}^{s} e K^{\prime} S_{x}^{3} S_{x}^{\prime} d s \\
& \int_{0}^{s} e K^{\prime \prime} S_{x}^{2} S_{y}^{2} d s=-2 \int_{0}^{s e} K^{\prime}\left(S_{x} S_{x}^{\prime} S_{y}{ }^{2}+S_{x}{ }^{2} S_{y} S_{y}^{\prime}\right) d s
\end{aligned}
$$

The final expressions for the aberration coefficients

$$
\begin{align*}
\left(x \mid x_{0}^{\prime 3}\right)= & -\frac{3}{2} C_{x}\left(S_{e}\right) \int_{0}^{S_{e}}\left[K S_{x}^{2} S_{x}^{\prime 2}+\frac{2}{9} K^{\prime} S_{x}^{3} S_{x}^{\prime}\right] d s \tag{2}\\
\left(x \mid x_{0}^{\prime} y_{0}^{\prime 2}\right)= & -\frac{1}{2} C_{x}\left(S_{e}\right) \int_{0}^{S_{e}}\left[K\left(S_{x}^{2} S_{y}^{\prime \prime 2}-2 S_{x} S_{x}^{\prime} S_{y} S_{y}^{\prime}\right)\right. \tag{3}\\
& \left.+K^{\prime}\left(S_{x} S_{x}^{\prime} S_{y}^{2}-S_{x}^{2} S_{y} S_{y}^{\prime}\right)\right] d s \\
\left(y \mid y_{0}^{\prime 3}\right)= & \frac{3}{2} C_{y}\left(S_{e}\right) \int_{0}^{S_{e}^{e}}\left(K S_{y}^{2} S_{y}^{\prime 2}+\frac{2}{9} K^{\prime} S_{y}^{3} S_{y}^{\prime}\right) d s \tag{4}\\
\left(y \mid x_{0}^{\prime 2} y_{0}^{\prime}\right)= & \frac{1}{2} C_{y}\left(S_{e}\right) \int_{0}^{S_{e}}\left[K\left(S_{x}^{\prime 2} S_{y}^{2}-2 S_{x} S_{x}^{\prime} S_{y} S_{y}^{\prime}\right)\right. \tag{5}\\
& \left.+K^{\prime}\left(S_{x}^{2} S_{y} S_{y}^{\prime}-S_{x} S_{x}^{\prime} S_{y}^{2}\right)\right] d s
\end{align*}
$$

Equations (2)-(5) are integrated to give the 3rd order aberrations contributions are non-zero only within the magnetic elements. We ignore the three dipoles of the system and integrate over the twelve quadrupoles. For simplicity we approximate the fringe field behavior of a quadrupole by linear functions i.e., the K value is assumed to behave as shown

The gradient is constant with value $K_{\max }$ for $|\ell|<\frac{\ell_{\text {eff }}}{2}-r_{B}$
where $\ell_{\text {eff }}=$ quadrupole effective length and $r_{B}=$ bore radius and the gradient changes linearly when

$$
\frac{\ell_{\text {eff }}}{2}-r_{B}<|\ell|<\frac{\ell_{\text {eff }}}{2}+r_{B}
$$

Of course we maintain the same integrated strength as for a square edge magnet:

$$
\int_{-\infty}^{\infty} K d \ell=K_{\max } \ell_{e f f}=K_{\max }\left[\left({ }^{\ell}{ }_{\text {eff }}-2 r_{B}\right)+\frac{1}{2}\left(2 r_{B}+2 r_{B}\right)\right],
$$

so in the central regions $K=K_{\max }, K^{\prime}=0$ and in fringe regions

$$
\begin{aligned}
& K^{\prime}=-\frac{K_{\max }}{2 r_{B}} \frac{\ell}{|\ell|} \\
& K=\frac{K_{\max }}{2 r_{B}}\left[\left(\frac{\ell \text { eff }}{2}+r_{B}\right)\right]+\ell K^{\prime}
\end{aligned}
$$

Each quadrupole was subdivided into fifty intervals and Eas. (2)-(5) were evaluated numerically for an interval

$$
\Delta+\left(\ell_{\text {eff }}+2 r_{B}\right) / 50 \quad \text { and } \quad \phi=\Delta \sqrt{K}
$$

The S and S^{\prime} functions were taken through each section of quadrupole by the standard transform

$$
\begin{aligned}
& \binom{S^{\prime}}{S^{\prime}}=\left(\begin{array}{cc}
\cos \phi & \frac{\sin \phi}{\sqrt{K}} \\
-\sqrt{K} \sin \phi & \cos \phi
\end{array}\right)\binom{S_{0}}{S_{0}^{\prime}} \quad \text { for a focussing quad } \\
& \binom{S^{\prime}}{S^{\prime}}=\left(\begin{array}{ll}
\cosh \phi & \frac{\sinh \phi}{\sqrt{K}} \\
\sqrt{K} \sinh \phi
\end{array}\right)\left(\begin{array}{c}
S_{0} \\
\\
S_{0}^{\prime} \\
0
\end{array}\right) \quad \text { for a defocussing quad }
\end{aligned}
$$

where the starting values of the S and S^{\prime} functions were taken from the TRANSPORT output at $\ell=-l_{\text {eff }} / 2$ and transformed back to $\ell=-\left(\ell_{\mathrm{eff}} / 2+r_{B}\right)$.

Equations (2) to (5) reduce to a summation over the contributions from twelve quadrupoles

$$
q=\sum_{i=1}^{12} \Delta q_{i} \quad \text { for each aberration }
$$

The contributions from each quadrupole to the four aberrations, as well as the final results are listed in Table II. The coefficients are small as calculated by this method - the major contributors to ($x \mid x_{0}^{13}$) are quadrupole 3,6 and 11 where the beam is 50 cm wide horizontally. For the extreme rays

$$
\begin{array}{lll}
x_{0}^{1}=2.94 \mathrm{mrad}, & y_{0}^{1}=5.1 \mathrm{mrad} \\
\Delta x_{1}=\left(x \mid x_{0}^{3}\right) x_{0}^{\prime 3} & =4.67 \mathrm{~mm} \\
\Delta x_{2}=\left(x \mid x_{0}^{\prime} y_{0}^{2}\right) x_{0}^{\prime} y_{0}^{\prime 2} & =1.59 \mathrm{~mm} \\
\Delta y_{1}=\left(y \mid y_{0}^{3}\right) y_{0}^{3} & =0.31 \mathrm{~mm} \\
\Delta y_{2}=\left(y \mid x_{0}^{\prime 2} y_{0}^{\prime}\right) x_{0}^{\prime 2} y_{0}^{\prime}= & 1.58 \mathrm{~mm}
\end{array}
$$

In view of the expected distribution functions, most $x_{0}^{\prime}, y_{0}^{\prime}$ values will be small; since the aberration contributions are cubic in angle the geometric aberrations cause a negligible increase in final focus size. The results as found in this quick analysis should be verified with a ray tracing program.

TABLE I. QUADRUPOLE DATA

QUADRUPOLE	ACTION	$g(T / m)$	$\ell_{\text {eff }}(\mathrm{m})$	$r_{\text {b }}(\mathrm{m})$
1	HF	1.8966	1.0	0.15
2	VF	-3.6847	1.0	0.15
3	HF	5.8519	2.0	0.3
4	VF	-7.1923	2.0	0.3
5	VF	-7.1923	2.0	0.3
6	HF	5.8519	2.0	0.3
7	VF	-3.6847	1.0	0.15
8	HF	1.8966	1.0	0.15
9	HF	1.8097	1.0	0.15
10	VF	-3.5971	1.0	0.15
11	HF	5.8879	2.0	0.30
12	VF	-7.8457	2.0	0.30

TABLE II. ABERRATION CONTRIBUTIONS

