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CALCULATIONS OF MAJOR 3RD ORDER GEOMETRIC ABERRATIONS
FOR FINAL TRANSPORT LINE

Eugene Colton
Argonne National Laboratory

Karl+~rown and Jack Peterson have presented a Final Transport Line for
10 GeV U . The system consists of three 1/2 wave quadrupole sections and three
dipoles. Furthermore, the system has been chromatically corrected to
second-order utilizing two families of sextupoles.

The system was designed to produce a final 4mm radius spot in the
center of a 5m radius reaction chamber for a beam with a geometrical .
emittance of 60 x 10-6 TI m-rad in both transverse phase planes; the startlng
ellipses in the phase planes are upright, viz
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1.6 x 10-4 )
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in the y plane (Vert.).

where the primes denote differentiation with respect to s. So the system
is point to point and waist to waist (S = C' = 0).

The third-order aberration coefficients for the system can be
calculated by integrating the first-order functions over the transport.

An aberration coefficient for a quadrupole system is given by (see
Steffen p. 52)

se
c(s) f(s) ds - C(se) J S(s) f(s) ds

o
(1 )

where se is the end of the beam (the central trajectory propagates in
the +s direction), and f is the driving coefficient for the aberration.
Since the system is point to point (S(se) = 0), we rewrite Eq. 1

se
q = -C(s ) f S(s) f(s) ds

e 0

The Transport run indicates that the large beam envelopes occur at
very large S values (i.e., are built up only by the initial angles),
therefore, we only considel~ the aberrations due to the initial angles
x~ and y~ and not those involving the initital beam sizes x and y .
The problem is reduced to a modest exercise of evaluating fo8r 0
aberrations instead of twenty.
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where K = 0 in a field free region

and K= ~p in a quadrupole where g is the field gradient.

we integrate the terms involving KJI once by parts and assume K' = 0 at s = 0

and at se

se se
J KJl 5 4 ds = -4 J K'5 3 5' ds

x x xo

s 2 s
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The final expressions for the aberration coefficients
s

(xlx,3) = - l c (s) J e [K5 2 5,2 + £ K'5 3 5'] ds
o 2 x e x x 9 x x

o
(2)

s
e

(xix' y,2) = - 1 c (s) J
o 0 2 x e o

[K( S 2 S' 2 - 2S S' S 5')x y x x y y
(3)

+ K' (5 5 I 5 2 - 5 25 5')] d5
X X Y X Y Y

5

(y IYo'3) = -23 C
y

( 5e) J e (KS 2 5 ,2 + ~ K' 5 3 5 ') ds
o y Y 9 y y

5e
(YIX,2y ') =1 C (5) f [K(5,2 5 2 - 25 5'S 5')

o 0 2 yeo x y x x y y

+ K' (5 25 S' - S S'5 2)] dsx y y x x y

(4)

(5)



381

Equatinns (2)-(5) are integrated to give the 3rd order aberrations ­
contributions are non-zero only within the maqnetic elements. We ignore
the three dipoles of the system and integrate over the twelve
quadrupoles. For simplicity we approximate the fringe field behavior
of a quadrupole by linear functions i.e., the K value is assumed to behave
as shown
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and the gradient changes linearly when

Of course we maintain the same integrated strength as for a square edge magnet:
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Each quadrupole was subdivided into fifty intervals and Eqs. (2)-(5) were
evaluated nJmerically for an interval .

and

The 5 and 5' functions were taken through each section of quadrupole
by the standard transform

(
5 cos 4> sinct

50-{K
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5' -p sin ct> 5'
0

S cosh <p
sinh <P

50
V for a defocussing quad=

5· cosh <p 5'
0

where the starting values of the 5 and 5' functions were taken from the
TRANSPORT output at ~ = - ~eff /2 and transformed back to ~ = - (£eff/2 + r B) •

Equations (2) to (5) reduce to a summation over the contributions
from twelve quadrupoles

q
12
~ 6qi

i = 1

for each aberration

The contributions from each quadrupole to the four aberrations, as well
as the final results are listed in Table II. The coefficients are small
as calculated by this method - the major contributors to (xlx~3) are
quadrupoles 3, 6 and 11 where the beam is 50 cm wide horizontally. For
the extreme rays
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Y1 = 5.1 mrado

= 4.67 mm

= 1.59 mm

= 0.31 mm

= 1.58 mm

In view of the expected distribution functions, most x~, y~

values will be small; since the aberration contributions are cubic in
angle the geometric aberrations cause a negligible increase in final
focus size. The results as found in this quick analysis should be
verified with a ray tracing program.
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TABLE I. QUADRUPOLE DATA

QUADRUPOLE ACTION g(T/m) ieff(m) rb(m)

1 HF 1.8966 1.0 o. 15
2 VF -3.6847 1.0 O. 15
3 HF 5.8519 2.0 0.3
4 VF -7. 1923 2.0 0.3
5 VF -7. 1923 2.0 0.3
6 HF 5.8519 2.0 0.3
7 VF -3.6847 1.0 O. 15
8 HF 1.8966 1.0 o. 15
9 HF 1.8097 1.0 o. 15
10 VF -3.5971 1.0 O. 15
11 HF 5.8879 2.0 0.30
12 VF -7.8457 2.0 0.30

TABLE I I • ABERRATION CONTRIBUTIONS

ABERRATION (mm/(mr)3)

QUADRUPOLE (xlx,3) (xIX,y,2) (Yly~3) (y Ix ,2y I)
0 o 0 o 0

1 2.08x10-8 -0.73x10-8 -3.33x10-8 +6.0x10-8
2 1.414x10-4 6.40x10-4 +4.73x10-4 +1.17xlO-3
3 5.88xlO-2 3.79x10-3 4.59xlO-5 +5.45x10-3
4 -7.654xlO-5 2.20x10-3 +2.37xlO-4 +4.78x10-3
5 -O.30xlO-3 2.18x10-3 +2.36x10-4 +4.85x1O-3
6 5.82x10-2 3.78xlO-3 +4.63xlO-5 +5.52x10-3
7 1.428xlO-4 6.4lx10-4 +4.73x10-4 +1.16x10-3
8 2.099xlO-8 -0.73xlO-8 -3.31xlO-8 +6.02xlO-8
9 1.976xlO-8 0.76xlO-8 -3. l8xl 0-8 +5.6lx10-8
10 1.467x10-4 6.54x10-4 +4.77xlO-4 +1.19x10-3
11 6.657x10-2 4. 16x1 0-3 +4.88x10-5 +5.94x10-3
12 1.511xlO-4 2.73xlO-3 +3.03xlO-4 +5.79xlO-3

TOTAL O. 1839 2.078xlO-2 2.34x10-3 3.585x10-2




