T. Katayama, A. Noda and N. Tokuda University of Tokyo

Beam loss due to charge exchange processes such as

$$A^{n+} + A^{n+} \Rightarrow A^{(n+1)+} + A^{(n-1)+}$$

may be a severe obstacle to accumulating intense ion beams in a storage ring. Here, the loss rate is estimated for a ring where Xe^{4^+} ions are supposed to be accumulated.

The loss rate is given by

$$\alpha \equiv \frac{1}{N} \frac{dN}{dt}$$
(1)

$$=$$
 n_{lab}^{V} cm $^{\sigma}$ cm . (2)

The symbols are defined in Table 1, where machine parameters are also listed. The density of ions in the ring is

$$n_{lab} = \frac{N}{2\pi RS} , \qquad (3)$$

on the assumption that the beam is completely debunched. The beam is to be stored in the ring as shown in Fig. 1. Then the cross section of the beam is

$$S = \pi ab + b\Delta x_p , \qquad (4)$$

where a and b are obtained from the beam emittance ε and the average betatron amplitude function, $\overline{\beta}$,

$$a = \sqrt{\varepsilon_x \overline{\beta}}$$
, (5)

$$a = \sqrt{\varepsilon_y \overline{\beta}}$$
 (6)

The beam spread due to a momentum dispersion is

$$\Delta x_{p} = \eta \frac{\Delta p}{p}$$
(7)

The dispersion function is approximately

$$n = \bar{B}^2 / R \tag{8}$$

Then the beam cross section is numerically calculated with values listed in Table 1, and the density is

N	number of ions in the ring	2×10^{13}
nlab	density of ions	
R	mean radius of the ring	140 m
S	cross section of the beam	
V _{cm}	velocity of ions in the center of mass frame	
α	loss rate	
β	ratio of ion velocity to that (0.507 (150 MeV/u) 0.204 (20 MeV/u)	of light (~ 19.5 GeV))(~ 2.6 GeV)
β	average betatron amplitude function	13.7 m
Y	$1/\sqrt{1-\beta^2}$	
<u>q'3</u> q	momentum difference between colliding ions	
<u>∆p</u> p	total momentum spread	2.5×10^{-3}
εX	emittance in the horizontal direction	35 x 10 ⁻⁶ m-rad
εy	emittance in the vertical direction	18×10^{-6} m-rad
n	dispersion function	
θ	collision angle in the laboratory frame	
σcm	cross section of the electron transfer process 1	× 10 ⁻¹⁹ m ²
τ	life time	

Fig. 1. The beam profile in the accumulation ring.

Table 1 List of	Symbols	and Machine	Parameters
-----------------	---------	-------------	------------

$$n_{lab} = 2.01 \times 10^{13} (m^{-1})$$
 (9)

The speed of the ion in the center of mass frame is given by $\label{eq:speed}$

$$\beta_{\rm CM}^2 = \left(\frac{\beta}{2} \frac{\delta' p}{p}\right)^2 + \left(\beta_{\rm Y} \sin \frac{\theta}{2}\right)^2 \qquad (10)$$

As the momenta of ions are considered to be distributed as shown in Fig. 2, the typical momentum difference between the ions which will collide with each other, is

$$\frac{\delta' p}{p} = \frac{\Delta p}{p} \frac{2a}{2a + \Delta x_p}, \qquad (11)$$

where $\delta'p/p$ is determined so that the areas of the parallelogram and the rectangle are equal. Then the first term of eq. (10) is 1.59×10^{-3} for 150 MeV/u and 6.50×10^{-4} for 20 MeV/u. The maximum collision angle in the laboratory is evaluated by

$$\Theta = 2\sqrt{\varepsilon_x/\beta}, \qquad (12)$$

and the second term is numerically 1.56×10^{-3} for 150 MeV/u and 5.63 x 10^{-4} for 20 MeV/u. Then the velocity in the cm frame is

$$v_{cm} = \begin{cases} 3.27 \times 10^5 (m/s) (150 \text{ MeV/u}) & (13) \\ 1.24 \times 10^5 (m/s) (20 \text{ MeV/u}) & (14) \end{cases}$$

As experimental data of cross sections for the electron transfer processes are scarce and there are no data for $Xe^{4+} + Xe^{4+} \Rightarrow Xe^{5+} + Xe^{3+}$, so a theoretically predicted value is adopted. Macek estimated the cross section for $\chi e^{8+} + \chi e^{8+} \Rightarrow \chi e^{9+} + \chi e^{7+}$ at much smaller than 10^{-18} cm².⁽¹⁾ It is supposed that such a small cross section is due to a ${\rm 4d}^{10}$ closed outer shell configuration of a Xe^{8^+} ion. In our case of Xe^{4^+} , however, four electrons remain in the outer shell, so the cross section should be larger. According to papers presented at previous Heavy Ion Fusion Workshops⁽²⁾ the cross sections for the electron transfer process of various ions are estimated to be of the order of 10^{-15} cm². Therefore, a value of $1 \times 10^{-15} \text{ cm}^2$ is adopted here.

Fig. 2. Five beam pulses of different momenta are stacked in the accumulation ring. The typical momentum spread δ 'p is determined so that the area of the rectangle (dashed line) and that of the five pulses are equal.

Now the loss rate can be numerically calculated, and

$$= \left(\begin{array}{ccc} 0.657 \text{ s}^{-1} & (150 \text{ MeV/u}), \\ \end{array} \right)$$
(15)

$$(0.249 \text{ s}^{-1})$$
 (20 MeV/u) · (16)

The life time, the inverse of the loss rate, is

$$\tau = \begin{pmatrix} 1.52 \text{ s} & (150 \text{ MeV/u}) \text{ , } & (17) \\ 4.02 \text{ s} & (20 \text{ MeV/u}) \text{ . } & (18) \end{pmatrix}$$

These lifetimes are long enough in a heavy ion fusion driver complex which includes an accumulation ring where about 10^{13} ions are stored. ⁽³⁾

References:

α

- J. Macek, Proceedings of the Heavy Ion Fusion Workshop, Argonne, 1978, p. 183.
- (2) Proceedings of the Heavy Ion FusionWorkshop, Berkeley, 1977, Proceedings of theHeavy ion Fusion Workshop, Argonne, 1978.

(3) T. Katayama and A. Noda. These Proceedings.