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STABILITY OF LONGITUDINAL MOTION IN INTENSE ION BEAMS

David Neuffer
Fermi National Accelerator Laboratory

I. Equations of Motion

The equations of longitudinal motion which

we use are obtained by solution of Maxwell's

equations with simplifying assumptions. We

assume that the transverse (x-y) and

longitudinal (z) motions of particles in the

beam are completely decoupled with the beam

length much greater than the beam radius. We

choose the longitudinal distance from the center
of the bunch z and the position of the center of

the bunch s as the dependent and independent

variables. We will assume the motion is

non-relativistic and that the center of the beam

bunch is not accelerating but moves with

constant speed ec. If the beam pipe is

perfectly conducting, we find the following

equation of motion (in MKS units):

Inertial confinement fusion using high

energy heavy ion beams requires focussing of the

igniting ion beams in longitudinal, as well as

transverse, space at the pellet target. The

focussing requirements set limits on the size of

the beam emittances at the target, and obtaining

sufficiently small emittances at the target

requires sufficient stability in beam transport

and acceleration from source to target, and an

analysis of that stability is necessary for

heavy ion fusion (HIF) accelerator design.
Theoretical analysis is necessary since

practical accelerator experience with high

intensity non-relativistic ion beams has been

limited. This analysis is particularly

important for the case of a heavy ion induction

linac, since previous induction linacs have been

electron accelerators, and the highly

relativistic electrons have negligible

longitudinal motion. In this paper we present

some results of our analysis of the of the

stability of longitudinal motion.

(2 )
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Analysis of design studies of HIF

accelerators indicates that the assumption of

perfectly conducting walls may not be adequate.

If we assume a resistive coupling per meter R' ,

a term

must be added to equation 1. In sections II and

III we will assume that the walls are perfectly

conducting (R ' = 0) and in later sections we

will consider the effects of non-zero R' •

II. Envelope Equation for Longitudinal Motion

Unperturbed longitUdinal motion of a beam

bunch through a transport system can be

calculated using the envelope equation derived
before. 1 This envelope equation applies to a

bunch transported through a system with linear
bunching fields; that is

where e is the proton charge, q is the ion

charge state, Mis the ion mass, A is the number

of ions per unit length, and g is a geometric

factor of order unity. For the particular case

of an ion at the center of a constant transverse

density round beam of radius a inside a round

pipe of radius b, g = 1 + 2 tn (b/a). We assume

that transverse variations simply produce some

average g, which we treat as constant. In

equation 1, we have added an external bunching

field Ez to the space charge self-field.

The equation of motion (1) is rewritten as:

qe El( s) 2 2
z" = z _ ~----9-~ (4 )

l"1e 2c2 dz Me 2c2 (41rE: o) az

- K(s) z - A~az
(1)
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The particle distribution which is a solution to

the Vlasov equation with this equation of motion
is:

(8 )

x

defined wherever the square root is real (f = 0

otherwise), and where N is the total number of
ions in the bunch, E L is the longitudinal

emittance, and z is the envelope amplitude.o
This distribution has a parabolic particle
density:

A(Z, s) =ff(Z, z's)dz' = ~~ (1 - Z~) (6)
o Zo

and Zo is a solution of the envelope equation:

2 2
II d Zo EL 3 AN

Zo - -- - -- + - - - K(s) Zo (7)
- ds2 - z 3 2 z 2

o 0

where the initial conditions (zo (s=O, zo(s=O))

may be chosen arbitrarily.

Stability is determined by adding a small
(5) perturbation f p (z, v, s) to fo (z, v) and

solving the linearized Vlasov equation for f
p

(z, v, s) and Ap (z, s) with our solutions of
the form

-iw s
fp(z, v, s) = fn(z, v) e n

-iw s f -iw s
and Ap(Z, s) = A (z)e n = f (z,v) dv e n (9)n n

Instability exists where Im(w) ~ o. As reported
in reference 6, the solutions have the following
properties:

A (z) ex p (z) (Legendre polynomials)
n n ~

and wn is a solution of

2 2 n

v w; wp = wp
2
~ ~n (~m)(~::m)

n m=-n

2 2
w n - (( n-2m)v )This solution can be, and has been, used to

check computer programs which integrate the

Vlasov equation numerically, such as the code of
2Neil, Buchanan, and Cooper.

3 AN
=2" -3 '

Zo

2
v = K.

(10)

that
An analysis of perturbations of this

distribution can also be used to evaluate
longitudinal transport stability analytically.

III. Stability of Space Charge Perturbations
Following techniques previously developed by

L. Smith and others for analyzing transverse
stability, 3, 4, 5 and analysis of the

stability of space charge perturbations of the
distribution of section II has been presented
and in this section we summarize the results of
the analysis. 6

We first consider the case of the stationary
distribution, the particular solution of
equations 4-7 in which K(s) is constant, and

II I

Zo is chosen such that Zo (0) = Zo (0)
O. Our unperturbed distribution is (v =Zl):

It can be shown that all wn which are
solutions of (10) are real, which indicates
small space charge perturbations are stable,
unlike the transverse case. 4

The analysis has been extended to the case
where K(s) is periodic, and it is found that
instabilities can exists where the

eigenfrequency of the normal mode wn and the
period of K(s) are near resonance.

The largest such resonances are:

1. A second order resonance (n = 2) which
can occur if the phase shift of
individual particle longitudinal motion
over a period of K(s) is between 90 0 and
1040 at zero current. This has a growth

rate of - 1.1 per period.
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2. A fourth order resonance (n = 4) which
can occur for longitudinal phase shifts
between 45° and 57° per period. The

growth rate is - 1.03.

We then solve the linearized Vlasov equation
to find w(k).

(12 )

Instability can occur since Im(w) ~ O.

2 k2A2 + k2AN ' _ l'kBN
1

The result is: w 0

With parameters suitable for fusion
induction linacs, the waves of equations 11-13
show some interesting characteristics:

2
wor

For most accelerators considered to date,
such as the HIF induction linac, the
longitudinal phase shift per period of structure

is quite small, so periodic space charge
instabilities can occur only in very high order
n and the analysis indicates that these

instabilities become vanishingly small. The

only possible exception proposed to date would
be a bunching ring with a very large (> 30°)

longitudinal phase shift per turn at peak
field. Such bunching rings should be designed

to avoid the largest low order resonances.

The value of R' depends upon the current,

acceleration and efficiency requirements of the
induction linac; Faltens8 suggests that for
HIF it will be of the order of 100 n/m.

To show the effects of resistive coupling we
use an approximate analysis pre~iously presented
by L. Smith. 9 We start with an unperturbed
distribution with constant density in Z and with
a step function in Zl:

IV. Resistive Wall Instability
Faltens7 has suggested that particle

motion, particularly in an induction linac, may
show significant resistive coupling. In that

case the equations of motion are modified as

described in section 1. The self forces are
given by

2. The space charge term of equation (13)

k2AN' is usually larger than the

resistive term ikBN ' in absolute value,
if RI < 200 0Jm. With this

approximation, we have Re(w) ~ ±/k 2AN 1
'

and we find that the wave velocity

(Re(w/k)) is independent of k, so that
propagating wave packets do not disperse
but travel together coherently.

1. The requirement of small energy spread
for final focussing sets 6 quite small,

so that in equation 13 the velocity
2 2. 1" bl tdependent term k 6 1S neg 191 e 0

a first approximation. As a corollary
to this, the wave velocity (Re(w/k)) of

disturbances in the bunch is much
greater than individual particle
velocities.

3. Also with space charge dominant we have
the relation

B A- A~
ilZ

I N' (I I)fo(z, z ) =~ S(z + 6) - S(z - 6)
Im(w) ~ 1

2

and consider perturbing waves of the form

(11 )

so that the magnitude of the growth
parameter is independent of k. Waves change
in amplitude as elm(w)s and the sign of
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A naive expectation is that a growing lI s10w ll

The growth distance is about 500 m., which is

less than the total length of the HIF induction

linac (a few km.), but it is a substantial

fract i on of it.

Im(w) is correlated with Re(w/k) so that for

Re(w/k) > 0 ( ll fast ll wave) we have Im(w) > 0

and the wave decays, while with Re(w/k) < 0

(lI s 10w ll wave) we have Im(w) > 0 and the wave
grows.

Typical parameters for HIF can be

substituted into equation (13) to find sample

values of Re(w/k) and Im(w). For example, with

R' = 1000./m, N' = 3 x 1013 ions/m., q = 4, g

= 2, M= 238 m , and a = .33, we findp
(14 )I

LB I 41TE: O '
G Im(w). Re(w/k) !:!!~ acR LB d,n IFI

wave will reach the end of the bunch, be

immediately reflected to a decaying IIfast ll wave

by the external bunching field, and therefore

produce no net instability. With this

expectation, we can set a limit on the allowable

growth by requiring that an individual wave

packet not grow by more than some factor F in

traversing the bunch length LB. This

requirement can be written as:
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For the sample case of section 4, with LB = 10 m.,

we have G ~ 2.5 or F > 12. This amount of

growth may be tolerable provided that initial

wave packet perturbations are limited to a few

per cent.

The same type of delayed reflection exists

in numerical simulation with R' ~ O. However

substantial wave packet distortion occurs on
reflection and this distortion is not fully
understood. Future analysis will attempt to
understand this reflection distortion, and to

determine its importance in describing the

stability of longitudinal transport.

Numerical simulation seems to indicate that

longitudinal motion does not fit this naive
picture. To observe wave packet reflection at

the bunch end, we calculate a case with R' = 0

so that waves neither grow nor decay. In this

example (shown in figures 2) the disturbances

propagate to the bunch ends from the center in

about 800 m., then remain localized at the ends

for 800 m. while particle motions reverse, and

then propagate back toward the center. Wave

packet reflection is substantially delayed.

(14)
1) Re (r) = 7.4 x 10-3

2) IIm(w)/ = 2 x 10-3 m-l
= (500 m)-l

V. Effect of the Resistive Coupling on Beam
Stabi 1ity
In the previous section, we demonstrated

that a resistive coupling can lead to growth of

perturbations in a beam bunch with HIF

parameters. We need to determine the amount of
growth by resistive coupling which can be

permitted without endangering HIF performance.

To estimate this, we must include the effects of

the finite bunch size, which means that a
propagating disturbance will reach the end of

the bunch in a finite time.

This wave motion in a beam bunch can be

simulated numerically. In figures 1 we show

wave propagation in a perturbed beam bunch,

calculated using the program of Neil, Buchanan

and Cooper, which numerically integrates the

longitudinal Vlasov equation. In this case an

initial disturbance at the center of the bunch

spl its into forward-going lIfasP and backward

lI s10w ll wave packets which decay and grow

respectively. The behavior agrees closely with

equation (13) and the discussion above.
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l:A-D. Wave propagation in a perturbed beam

bunch. In thi s case we have RI =
I 13200 Q/m., Nmax = 3 x 10 ions/m.,

q = 4, g = 2, M= 238 mp' and a =
.35. An initial disturbance shown in A

(s = a m.) separates into IIfast ll and

II s10w ll waves at B (s = 100 m.) with the

IIfast ll wave rapidly decaying and the

II s 10w ll wave growing at C (s = 300 m.).

At 0 (s = 500 m.) the waves have reached

the ends of the bunch.
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2:A-F Wave propagation and reflection with R'
= O. The other parameters (N ' , q, g, M,
e) are the same as in Figures 1, A-D,

except the beam bunch is parabolic. In
this case the IIfast .. and "slow" waves

travel to the ends of the bunch from s

a m., to s = 800 m. (A, B, C). From s

800 to s = 1600 (C, 0, E) the beam bunch
reflects the distrubance. The reflected

waves (reversed in sign and direction)

appear clearly in figure F (s = 2000

m.). Reflection is not instantaneous in
any usual approximation.
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Each of these figures (l(A-D), 2(A-F))

contains two plots. The upper plots

graph the current I as a function of
position T , where T = -ecz. The lower

plots are contour plots of the

distribution function f(6E,T ) which is

proportional to f(zl, z). In both plots
the horizontal axis is position T.


