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LONGITUDINAL DYNAMICS OF BUNCHED BEAM IN A MODEL LINAC
Kwang Je Kim

Lawrence Berkeley Laboratory

In this note, I will report on some analytical efforts to understand

the longitudinal bunched beam dynamics in an induction linac as currently

stipulated for the HIF program. The analysis is carried out within the

framework of a simple model. It is found tha t a bunched beam tends to be

stable. Further work is necessary to extend the results to a more realistic

case.

I. THE MODEL

Since the subject is analytically quite involved, some mathematical

idealization is inevitable. The model linac to be considered here has the

following features:

a) The external force is described by a rectangular-well potential

shown i n Fig. (1).

b) The self-force F is given bys

2 ZR 2 d
e --L P A(X) - e Ze ~ p A(X)o '. oX 0

(1 )

Here, e = the proton charge, Po = the velocity of the bunch center, L = the

bunch length, A(X) = the line densi:ty, and ZR and Ze are the resistive and

the capacitive parts of the impedance, respectively. They are taken to be

real and positive ..

The main motivation for introducing the model is the calculational

simplicity. However, it should be noted that the external potential in

induction linacs resembles more or less the rectangular well. Also, Eq. (1)

represents the simplest possible form of the force incorporating both the

space charge repulsion and the deceleration due to the cavity impedance.
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The relevant magnitudes for ZR and Zc are

3
ZR - Ze - 10 ohms. (2)

The motion in phase space under the influence of the rectangular-well

potential is shown in Fig. (l.b). Here and in the following, p is the velocity

of the particle relative to the bunch center. A particle is reflected instan­

taneously when it reaches the edge of the potential well. Therefore, one

should identify the points Band C, and also the points A and D. In terms

of the distribution function ~T(t,x,P) (T for the total, unperturbed plus

perturbed), one obtains

(3)

Eq. (3) supplies the relevant boundary conditions for the longitudinal motion

of the bunched beam for our idealized linac.

The linearized Vlasov1s equation for the present problem is

d~ aW dat + P ax - f(p) [a ax + sJ A(X) = 0,

where

(4)

A(t,X) = f dp W(t,x,p), (5)

(6)

In the above, W
o

and ~ are the unperturbed and perturbed parts of ~T' m is

the rest mass of particle and y is the ratio relativistic mass/rest mass.

The boundary conditions (3) become the following statement:

~o(p), w(t,o,p) and w(t,L,p) are even functions of p. (7).
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II. METHOD OF ANALYSIS

The boundary value problem specified in the above can be solved ;n the

following steps: First, one seeks a solution in the following form:

t/J(t,x,p) = eiwt ~ e-ik.xA(k,P) .
k

From Eq. (4), one obtains

A(k, p) + ka + i B f (p) J A(k, p) dP = 0,
w - kp

1
1 + (ka+iS) f dpf(P)w_kp=O.

(8)

(9)

(10)

Next, one solves the dispersion relation (10) to obtain k as a function of w.

In general, there will be many branches ki(w), i = 1,2, .... In view of

Eqs. (8) and (9), the solution has the following structure:

,·wt e-i kn(w) • x ki (w) • a + is
l}J(t,x,p) = e ~ N w- k (w)p f(p) Ai' (11)

i i

where {A~} is a set of constants. The requirement that the function ljJ must

satisfy the boundary condition (7) results in a discrete set of eigenvalues

wn. Going back to Eq. (11), one determines the eigenfunction corresponding

to wn in the following form:

iw t
l}Jn(t,x,p) = e n Un(t,p) . (12 )

This completes the sketch of the general procedure to obtain the eigenvalues

and the eigenfunctions.
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It is instructive to compare the situation to the case of a coasting

beam circulating in a ring. In this case, Eq. (4) remains the same while

the boundary condition (7) is replaced by

~(t,x,p) = ~(t,x + C,p), (13)

where C is the circumference of the ring. Eq. (13) determines immediately

that k = kn = 27Tn/C, n = 1,2,.

Eq. (11).

The eigenvalue w is then obtained from
n

To compare the theory with numerical simulation, one has to consider the

initial value problem. This is easily solved if one could determine the

coefficients C in the expansion of the initial distribution ~(o,x,p);n

~(o,x,p) = ~ C ~ (x,p).n n (14 )

For this purpose, it is necessary to consider the following adjoint equation

a la Van Kampen l ):

3¢ 3m 3- + P ~. - (a - - B)3t 3x 3x J dp f(p) ¢(t,x,p) = O. (15 )

The function ¢(t,x,p) is subject to the same boundary condition as ~(t,x,p).

Following similar steps as in the above, one obtains the eigenvalues wn and

and the eigenfunctions Vn(x,p) for the adjoint system. The following

orthogonality theorem is easily derived:

L
(V ,Un) = f dxfdp V *(x,p) U (x,p) = 0 if w f wn*. (16)m ... 0 m n n

The coefficients en can now be determined by making use of (16).
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III. A SIMPLE EXAMPLE

In this section, the general procedure described in the previous

section will be illustrated for a special case in which the unperturbed

distribution ~o(p) is a simple step function as shown in Fig. (2). One has

f(p)
a~o (p) N

= ap = 2L~ [- 0 (p - ~) + 0 (p + ~) ] , (17 )

where N is the total number of the particles in the bunch. From the structure

of Eq. (4), it is convenient to write

~(t,x,p) = ~r(t,x,p) + o(p-~) A(t,x) + o(p+~) B(t,x).

The functions 1JJ I , A and B satisfy the following equations:

(l8)

(19 )

( 0

1

[ddt + '" \
a (A) N a(a -+ B)] + - (a -+ B)ax B 2L~ ax ~::) = o. (20)

In the above, Ar(t,X) is the charge density associated with 1JJ I ;

(21 )

The function 1JJ 1 satisfies the sa.me boundary condition as 1JJ, Eq. (7), while the

boundary condition for A and B becomes

A(t,o) = B(t,o), A(t,L) = B(t,L). (22)
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The boundary value problem for ~I is easily solved. One gets

In the above, gn(p) (hn(p» is an arbitrary even (odd) function of p, and

K = nn/Ln

(23)

(24)

Eq. (23) describes waves that move with phase velocity p.

Now consider the "edge wave ll described by Eqs. (20) and (22). If ~I

does not vanish, it drives the edge wave through the last term in Eq. (20).

Let us first consider the case ~I = O. The resulting system can be solved

following the general outline described in the previous section. The details

can be found in Reference (2), and the result is

Here

iw t Q [-iK x (W + k +ll)= e n e- x e n n n
-w + K+lln n

(25)

_ 8'
a' Na 8'

_ N8
Q - 2L (1 + a' ) , - ll2L ' -7 ,

2 (1 +a') ll2 (K
n

2 + Q2) , k ± = iQ ± Kwn =
n n

(26)

(27)

The factor e- Qx in Eq. (25) means that the particles tend to pile up in

the rear part of the bunch (The bunch moves to the positive x-direction).

This is due to the fact that the resistive part ZR of the impedance causes

a decelerating force through the first term in Eq. (1). For a machine with

a peak current 1= ep NIL ~ 104 Amp, velocity spread ll/p ~ .1%, energyo 0

mp 2 - 10 GeV and y - 1, the dimensionless constants a' and 8' are numericallyo
equal to the impedances Zc and ZR expressed in ohms. From Eqs. (2) and (26),
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the attenuation factor for such a machine is

(28)

It is perhaps surprising that the eigenfrequency given in Eq. (27) is

real so that no instabilities develop for the bunched beam case. This is in

sharp contrast to the coasting beam case where the beam is unstable as long

as ZR 1 o. The usual interpretation is that, while the wave grows along

the line C ~ D in Fig. (l.b), it damps on travelling along the line A ~ B,

the net result being stable. Notice that the growth along C ~ D (or damping

along A ~ B) is consistent with the explanation given in the previous paragraph.

To complete the solution, one has to consider the effect of the last

term in Eq. (20), which is analogous to the driving term in an oscillator

problem. It is then necessary to expand the last term in terms of the eigen­

functions (25). This is done easily with the help of the adjoint eigenfunctions

obtained below. The behavior of the complete solution can only be analyzed

numerically, and will not be discussed further in this paper.

The adjoint equation defined by Eq. (15) is, if written in the matrix

notation as in Eq. (20), as follows:

-1 J (a~-B)J
-1 ax

= 0 (29)

The functions C and D satisfy the same boundary condition as in Eq. (22).

The solution of the adjoint system is quite analogous to the original system.

One finds that is has the same set of eigenvalues w , and the corresponding
n

eigenfunctions are as follows:

(
C) _ i wnt Ox [- i Kn· x- e e e
D

i K • x
n-e (30)
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In the above, * denotes the complex conjugate. After a lengthy algebraic

computation, one confirms that the functions in Eq. (25) are orthogonal to

those in Eq. (30) for n f m.

IV. EXTENSION

For an arbitrary shaped unperturbed distribution ~ (p), it is conveniento
to introduce a new set of canonical variables (p~e) as follows;

{

p = Ipl

e = x E(p)
or equivalently

{

p = p E(e)

x = lei
(31 )

Here E(z) is a step functio~ defined to be +1 (-1) when z > 0 (z < 0). The

variables (p,e) are analogous to the polar variables in phase plane.

The Vlasov's equation becomes

ddt ~(t,e,p) + p d~(ta~'p) + f(p) (a :e + B E(e)) A(t,e) = 0,

00

A(t,e) = J dp[~(t,e,p) + ~(t,-e,p)].

o

The boundary condition (7) can be translated as follows:

~(t,8,o) is continuous at 8 = 0 and ~(t,L,p) = ~(t,-L,p). I

It follows that ~(t,e,p) can be regarded as a continuous periodic function

of period 2L in e. Therefore, an eigenfunction with frequency w must have

(32)

(33)

the following expansion:

ik .e
e n An(p). (34 )
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Inserting Eq. (34) into Eq. (32), one obtains a recursion relation (of

infinite order) to determine An(p). The eigenvalue condition involves

an infinite determinant as fol1ows3):

A
l

(w), 1 0
1 0

"3 15'
, ·..

1 A2(W) , 1 0
1

- 3" 5" 2T , ·..
= 0 (35 )

0
1 A

3
(W), 1 0- 5 7

, ·..

1
0

1 A
4

(w) , 1
-15 , - 7 , 9 , ·..

...................................................

Here
1 + (). K 0 ((u ) 00

An(W) = 7T. 4f3n; (:) Dn(w) = J dp f(p) K p-w·
n -00 n

Eq. (35) could probably be analyzed numerically.4)

(36)

For the case where the unperturbed distribution consists of two steps

as shown in Fig. (3), the procedure described in Section II is still tractable.

The dispersion relation (10) becomes a quartic equation in k, which could in

principle be solved to obtain k~(w), ~ = 1,2,3,4. The eigenvalue equation

is a complicated transcendental equation involving k~(w), which is presently

being studied numerically. In some limiting cases, the equation can even be

studied analytically. For example, suppose that the shaded area in Fig. (3)

is very small compared to the unshaded one. One can then set up a perturbation

series w = w 0 + w 1 + w 2 + Here w 0 is the frequency for the simplen n n n n
step function discussed in Section III. The lowest order frequency shift w 1

n

was computed. Although the formula is too lengthy to be recorded here, w 1 was
n

found to be real for all values of ZR and Zc. Therefore, the motion is again

stable.
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With the examples treated so far, one may get the impression that a

bunched beam in our model linac is always.stable. However, that is not

generally so. A simple example is the case in which S = 0 and ~ (p) has a
0

dip as in Fig. (4) . It is not hard to show that when S = 0, the wave vector

k is real and given byn

Since kn is known, wn is determined from the dispersion relation (10). The

situation here is quite similar to the coasting beam case. Now, it is well­

known that a coasting beam can develop instability if ~ (p) has a dip as
o

shown in Fig. (4) even when the resistive part S vanishes. Thus, one concludes

that the longitudinal motion of our model linac can be unstable. However, the

instabilities seem to be driven mainly by the geometrical parameters of ~o(p),

and not by the resistive part of the impedance.

v. DISCUSSIONS AND CONCLUSIONS

In this paper, a linac specified by a) and b) in Sec. (I) is discussed

in detail, limiting ourselves to analytical methods. The results obtained

here are encouraging in the sense that a sensible theoretical approach to the

longitudinal dynamics of bunched beam could be formulated and solved. However,

a lot of further work is necessary both within the framework of the present

model and beyond. The paper will be concluded by listing sonle of the immediate

problems.

First, within the framework of the model, they are a) the problem of

obtaining eigenfunctions and eigenvalues for a general distribution ~o(p);
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this problem was briefly touched on in Section IV. One might try, for example,

to solve the determinant equation (35) by numerical method. b) The initial

value problem; given an intitial disturbance at t = 0, how does it develop

in time? By analyzing this problem, one would like to understand how the wave

disperses and how it reflects at the walls of the potential. The results of

Section III should be useful for this analysis.

The model studied in this paper was shown to be stable in most cases

(except when ~ (p) has a dip), and it does not explain the microwave instabilities
o

observed at CERN and FNAL. Therefore, it is important to consider a more

realistic model. In doing so, there are the following problems: c) Replacing

the rectangular well potential by a more realistic potential. A realistic

potential cannot be rectangular. Also, one would like to understand the

differences between the "longitudinal dynamics in induction 1inacs and in

storage rings. d) Replacing the self force (Eq. (1)) by a more realistic

one. For this purpose, one has to start from a first principle, Maxwe1l's

equations, etc. A possible improvement of Eq. (1) is proposed by L. Smith,

who suggested that the factor p A(X) in Eq. (1) be replaced by
o

POA(X) -+ f(po + p) ~(t,x,p) ds . (38)

(39)

The above replacement is made plausible by arguing that the force should be

proportional to the current rather than charge density. With this modification,

the Vlasov's equation can again be solved exactly when ~ (p) is given by Fig. (2).
o

Following similar steps as in Section III, one finds that the eigenvalues for

the edge waves are given by
,...-:::...-----=------------

iy ±-J - /+(1+ 0)(1+0.') 112(kn
2 +Q2) ,

w =------.--------~--
n 1 + 0
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where
sB I (1 + a I ) tJ.

Y = 4(1 +0. 1 ) (r)'
als

cS = 4(1 +0. 1
) ,

(40)

Notice that wn now has a positive imaginary part. Therefore, the perturbation

is damped, and again there is no instability. This is easy to understand

because the growth rate along C ~ 0 in the phase plane is less than the

damping along A ~ B due to the replacement Eq. (38).
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