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INVESTIGATION OF TOLERANCES FOR THE
PARAMETERS OF THE PROPOSED LBL TEST-BED LINEAR INDUCTION ACCELERATOR

S. Chattopadhyay, A. Faltens, L. J. Laslett, and L. Smith
University of California Lawrence Berkeley Laboratory

I. INTRODUCTION

The Lawrence Berkeley Laboratory has pro­
posed the constructiQn of a Test-Bed linear in­
duction accelerator1) to test the technique of
accelerating heavy ions by use of induction
modules and to investigate the transverse focus­
ing of the ion beam by a FODO sequence of
magnetic quadrupole lenses. The induction
accelerator is intended to accept a 6-~sec bunch
of Cs+l ions with 3-MeV kinetic energy
(ao~ 0.007) from a sequence of a few pulsed
drift tubes and to accelerate these ions to a
kinetic energy of approximately 25 MeV
(a ~ 0.020) in a distance ~ 102 meter. The
approximately 3-fold increase of velocity,
combined with bunching of the beam by a factor
of two, would result in a six-fold increase of
current. A favorable value of transverse
emittance -- e.g., ~€N = (2.5xI0-5)~ meter
radian, normalized -- then could be expected to
permit a beam current that increases from
10 = 2.5 A (~ 15 ~C) to I ~ 15 A to be
accommodated within an acceptable aperture. 2)

To facilitate the investigation of tolerance
limits that would be desirable to impose on the
acceleration wave-forms -- and, more generally,
to permit study of the expected dynamical
behavior of beams of different quality and
intensity -- we have constructed an illustrative
schedule for the acceleration wave-forms and
have prepared programs for the numerical
examination of the consequences that could
result from errors in wave-form magnitude,
timing, or etc. and from variations in the
initial characteristics of the beam. The design
of appropriate wave-forms was initially
undertaken by treating the longitudinal field
E(z,t) as a continuous function of z, but, with
such work as a guide, impulsive wave-forms were
then adopted for application at intervals (e.g.,
at I-meter intervals) along the accelerator. A
check of the uniformity of the linear charge
density at various fixed times indicated that
this transition to impulsive fields could be
made successfully if the acceleration and
bunching begin gradually. Considerations that
entered irto the wave-form design are summarized
in Sect. II and some tolerance questions that
warrant attention are discussed in Sect. III.
The investigation of tolerance limits was begun
only very shortly prior to the start of the
Workshop (and continued to a limited degree
during the Workshop); accordingly, although
initial results appeared favorable, it clearly
would be premature to report tolerance results
at this time.

Following the acquisition of sufficient
information concerning the tolerance
restrictions for longitudinal acceleration, for

a satisfactory representative set of wave-forms,
we are prepared to extend the computational work
to a similar investigation of beam-envelope
behavior in the FOOO transport system of the
accelerator. It is planned, for convenience,
initially to consider this transport system to
be strictly periodic spatially (occupancy
factor, n = 1/2; half-period, L = 1 meter),
although a final design of quadrupole lenses
meriting subsequent examination well might
divide the Test-Bed into two or three sections
characterized by successively increasing values
of L and certainly will require space for
occasional pumping ports, etc. The work in pro­
gress does not take collective effects into
account explicitly, but parameters controlling
potential collective instabilities have been the
subject of other theoretical and computational
investigations.

II. THE LONGITUDINAL ACCELERATING FIELD

1. Specifications

Cs+1 to be accelerated from

ao = 0.007 to a = 0.020;

Little initial spread of a;

Inject for an interval =6 ~sec;

Accelerate with spatial bunching by a
factor =2;

Maintain the linear ion density
substantially constant, vs. z, at every
fixed t;

Assume that one will SUbsequently
design and provide lI ears ll to the
applied wave-forms, to compensate for
longitudinal space-charge forces at the
ends of the bunch;

Conform to technological restrictions
concerning the magnitude, shape, and
volt-sec of the applied wave-forms
(e.g., E less than circa 0.30 or 0.35
1\1V1m and ¢ <0.8 vo It-sec) •

The specification that the linear charge density
along the bunch shall be constant at any fixed
time is favorable with respect to avoidance of
excessive transverse space-charge defocusing
forces, and the avoidance of a significant dA/dz
in the interior implies that the wave-forms
require only the addition of modest corrective
fields (llears ll) at the ends in order to
compensate for longitudinal space-charge forces.
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Fig. 2. An example of the field on a reference
particle, and of the associated fields on the
nose and tail particles when the bunching
function is that shown in Fig. 1.

0.30

attain values limited chiefly by technological
considerations. There has been no attempt, in
the work described here, however, to construct a
fully optimized design, since the object of this
work is an investigation of tolerances. 3 )

3. Discrete Impulsive Fields

Prior to the investigation of tolerances,
the continuous longitudinal field (Sub-section
2) was discretized into a sequence of impulsive
fields (nominally at 1-meter intervals). Values
of F at each of the discrete z values were
obtained at seven values of T (within the
interval during which the beam would be present)
and the corresponding wave-forms were obtained
as a least-squares fit to a polynominal of the
form
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2. Continuous Longitudinal Fields

In the work that follows we make frequent
use of "scale~" variables T and F, where T = ct

Afl c
and E = ~ F. If the requirement that the

longitudinal density remain constant along the
beam (at fixed t) is to be maintained, it is
clear that no particle should experience a
longitudinal electric field until the entire
beam is within the accelerator. Accordingly, if
injection occurs within the interval 0 < T < 1800,
one may arrange that E ~ a only for T > TG
where, for example, TG = 1850. Subject to
this restriction, one can prescribe the
functional form of the field F(Z(T)) acting on a
reference particle (e.g., on a particle
injected at the mid-point of the bunch) and also
a function w( T - TG) that descr'ibes the factor
by which the bunch length is shortened. The
requisite wave-forms, F (Z,T), then may be
derived (in practice, numerically) so that the
desired constancy of A(Z) is achieved -- Note 1.

An example of a selected bunching function,
w( T - TG), is shown in Fig. 1. Figure 2
shows, also as an example, the form of the
function E(Z(T)) chosen in this initial work to
represent the field acting on the reference
particle, together with the corresponding fields
acting on particles at the head and tail of the
beam. In anticipation of the use of localized
fields it has appeared desirable that the
acceleration and bunching begin gradually -­
most particularly if the constancy of linear
density vs. z is to be maintained throughout the
acceleration -- and the functions illustrated in
Figs. 1 and 2 were designed with this intent.
Subsequent to this gradual onset, the fields are
permitted to grow comparatively rapidly to

and
0.2 E = F( T R f ).c e .
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The parameters Ec and Ai (i=0, ••• 4) are
dimensioned variables, with each index value
corresponding to a discrete z value, and are
stored for SUbsequent use in other programs.

Fig. 1. An example of the bunching function,
W(T-TG).

A few representative wave-forms, as given by
such polynominals, are shown on Fig. 3 for the
field sketched (prior to discretization) in
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The longitudinal dynamics of particles
moving under the action of a sequence of
impulsive fields can be supplemented by
evaluations of the local bunching (specifically
of No/N), as indicated in Note 2, and the
bunching appears to remain substantially
constant with respect to z at fixed time. For
the specific longitudinal field mentioned here,
the resulting increase of ~ is as shown on
Fig. 5 and the bunching is such that
No/N = 0.5, implying an increase of current by
a factor 4) approximately 3/0.5 = 6.

Although the incident beam is presumed to be
composed of particles with substantially
identical values of ~o' phase plots (e.g., of
~ vs. z, at fixed time) can be constructed by
performing computations for particles with
somewhat different values of ~o. The
evolution of such phase plots, for an overall
spread of ~o much greater than would be
expected in practice, is illustrated in Fig. 6.
Corresponding plots of kinetic energy vs. t (at
fixed z) are shown on Fig. 7.

III. THE STUDY OF TOLERANCES

We have begun to investigate the sensitivity
of the acceleration process to the complete or
partial failure of one or more acceleration
cavities -- with initial results that appear to
be favorable. One effect that can result from
failures of this type is illustrated in Fig. 8,
from which one sees that the failure of a cavity
may result in a particle quite near the tail of
the beam drifting (as indicated by the broken
dashed line) outside the region covered by the

Fig. 3. Representative wave-forms for the
acceleration schedule of Figs. 1 and 2.
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Fig. 4. The flux swing per meter for the
acceleration fields of Figs. 1 and 2.
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Fig. 5. The growth of ~, from an intial value
~o = 0.007, for the fields of Figs. 1 and 2.
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Fig. 6. Evolution of phase diagrams, e vs. Z at
constant t, with the initial spread of B
markedly greater than would be expected in
practice.

t--------------------j
Denoting the Z and T values for a reference

ion by z and T, we specify F(z) for the ref­
erence particle and have

NOTES
Note 1. The Bunching Factor in the Case of
Continuous Fields

Fig. 8. An illustration of a possible effect,
on a particle near the tail of the beam, of a
cavity failure.

d(z-z)/dT = e-a and d{e-a)/dT = F{z,T)-F(z{T)).

With W(T-TG) [= No/N] also specified, we wish
(for notation, see Fig. 9)

applied wave-forms (region bounded by the solid
lines). A more detailed investigation of this
and related effects (such as the response to
timing errors, variations of eo, etc.)
ultimately may require the extension of the
wave-forms into regions where a field is not
required under ideal conditions, in addition to
the provision of some supplemental fields near
the ends in order to compensate for longitudinal
space-charge forces.
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Fig. 7. Plots of kinetic energy vs. t, at
constant z, for the case illustrated in Fig. 6.
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Fig. 9. Illustration of notation employed in
Note 1, leading to the relation
z - i = {z - z)o'w = Bo{fo-TO)·W.



155

Note 2. The Bunching Factor in the Case of
Impulsive Fields.

and computes the local density ratio as
8U

No/N = Bo. In the particular case that F(z,T)

is given by Eqn. (N2), the ratio w/w (with dots
denoting d/dT) is independent of z and may be
identified with 3F/'dz. With a and w initially
zero, the auxiliary variables u and v then will
be

If the function F(Z,T) is not specified
through use of the bunching function
W(T - TG), the local value of No/N may be
evaluated for any explicit specification of F
through introduction of auxiliary variables
u = [cnl e)To] z=const. and

v = B [3s/3To]z=const. (with Uo = 1,
Vo = 0). One then employs the coupled total
differential equations

DB
OT - _n 6Z

n 8 2
n

8nDB n + (3Fn+l /aT)DT n+l
Bn+l

(ii). Traversing a cavity:
T is unchanged,

Bn+1 =~Bn
2

+ 2Fn+1

DTn+l

and

is a factor that may be applied to convert the
old density ratio (initially unity, at z = a )
to the new density ratio, where

c5Zn [( Bn+ 8n_1) - (OBn - DBn_l )]DT n

c5Z n+l [(Bn+l + Bn) - (DBn+l - DBn)]OTn+l

B. For infinitesimally neighboring
trajectories (DT and Os):

(i). In passing from one cavity to the
next:

From Fig. 10,

and

(ii). In moving between two cavities:

To update linear ion density (N)
between cavities (oz < ~z), one recalls that,
from B(i) above (with n+1 replaced by n), one
employs a denominator 6Z n = [(sn + Sn-1)
- (DBn - DS n-1)] DTn in evaluating
6zn_1/6Zn• From Fig. 11 it is evident that
to obtain the density ratio at a point between
zn and zn+1 one should replace 6Z n by
sU + sL -- i.e., the density factor at
Z = zn should be corrected by the factor

to obtain the ratio at z = Zn+6Z.

A(i). Between cavities:

1 . _ +1 ( )6T = "8 6Z , , .e., Tn+l - Tn B
n

zn+l - zn '

while s remains unchanged.

( N1 )

dT _ 1 dz _
Bdz - B dT -

dB _ F dB _ rdZ - S <IT-
or

du _ v du _ v
dz - - 83 dT - -l
dv _ aF dv _ Bu ~crz- u - dT -aT aT

S-6=60 Cr O-TO )dw
dT

S=S + BoCro - To) Mor

so that

and

- - d2
F(Z,T)-F(z(T))=SO(LO-10) ~ or

dT
- d2 ( )F(Z,T)=F(z(-r))+So(To-To) ~. N2

dT 2

Equation (N2) thus provides the desired values
of F for particles crossing the location z at
time T = ct. The corresponding 6 is given by
Eqn. (N1), or may be obtained by integration of
ds/dT = F, while z is obtained from dz/dT = S.
If, in practice, one integrates with respect to
z (in order to obtain results at regularly
spaced z values), one must interlace
integrations with respect to T in order to
obtain the reference field [F(Z(T)), required by
Eqn. (N2)] at values of T common to the
reference and trial particles.

u = (so/s)w and v soew - BoBw,

with 1 dv = ~. - sw/w dF/d.,-BUdT" IJ l

= dF/dT - 83F/3z = 3F/3T, as required.

In practice the infinitesimal quantities DT and
DS may be initialized to 1 and 0, respectively,
since only their relative values are of
significance.
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8Zn+ I =(,8n+,-0,8n+l) OTn + 1 +<l3n +O,8n) OTn+ 1

=[<l3 n+ 1+l3n ) -(Ol3 n + I-D,8n)] DT n + 1

8Z n =(I3n- Ol3n ) OTn + (,8n _
1
+Ol3n -I) OTn

=[ (I3 n + 13 n_ I ) - (D 13 n - Ol3n _ 1 ) ] 0 Tn
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Fig. 10. Kinematics relevant to the change of
particle density in passing from one cavity to
the next.
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Fig. 11. Kinematics relevant to the change of
particle density in passing between induction
cavit ies.

2. Experiments now in progress at the Lawrence
Berkeley Laboratory are directed to a study of
the optical characteristics of a
contact-ionization Cs+1 source.

3. In a separate investigation, to which we
have returned following the Workshop, further
consideration is being given to the
specification of wave-forms and lattice
structures that may prove to be significantly
more economical than those mentioned in the
present report.

4. The acceleration and bunching produced by
the fields described by Figs. 1-3, and by
similar field systems3) to which we have given
consideration, results in a current that
increases slightly less rapidly than in direct
proportion to the kinetic energy. Such current
increases permit the transport of a
non-relativistic Kapchinskij-Vladimirskij beam
through a periodic focusing system of constant K
and n without the space-charge tune depression
during the course of acceleration becoming more
pronounced than initially (for the reference
particle).


