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IMPEDANCES FOR ELECTRON LINACS AND STORAGE RINGS

Perry B. Wilson

Stanford Linear Accelerator Center

In this note some basic concepts and results are presented concerning

the impedances of electron linacs and storage rings. The impedance of an

accelerator or ring completely characterizes the interaction of the beam

with its environment. Not only does the impedance (or its Fourier

transform, the wake potential) determine the energy loss by a bunched

beam to its environment, but it is also the chief ingredient required

for any calculation of beam stability.

As the title implies, we will be concerned mainly with particles

moving close to the velocity of light. The assumption v ~ c makes

possible certain important simplifications in the impedance-wake potential

formalism but, unfortunately, it is clearly violated in the case of

heavy ion accelerators. In several instances we will point out where

it might be possible to extend the results to the more general case.

Another limitation in the present note is that it is concerned

almost entirely with the longitudinal impedance. A parallel development

is often possible for the case of the transverse impedance, but the

analysis, measurement methods and computer programs tend to be more

complicated. At SLAC, the effort being directed to the measurement and

computation of transverse impedances is just now reaching the level that

was earlier devoted to the longitudinal impedance problem. For example,

a computer program is just being completed for calculating the trans

verse deflection modes in the SLAC linac structure.
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ISome Definitions

A loss parameter k(o), defined by

k(0) = 6U
q2

gives the total energy loss 6U given up to a component by a bunch with

charge q and bunch length o. For a periodic train of bunches spaced in

time by Tb, the loss parameter determines the average power loss to a

component by

(1 )

where Z£ = kTb is the loss impedance and 1
0

the average current. The

impedance function for a component is defined by (see Fig. 1),

z( ) = 'y(w)
w r1WT .

The wake function, or wake potential W(T), is the potential seen by a

non-perturbing test charge following at time T behind a unit charge

passing through a component. The net potential at time t in a charge

distribution I(t) is then obtained as

t

V(t) = Jw(t-T)I(T)dT.
_co

(2)

The following transform relations between the frequency and time domain

can be shown to hold (a tilda indicates the Fourier transform):

I(w) = l(t)

V(w) = V(t)

Z(w) = '1Tw(t).
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Some Consequences

The impedance function Z(oo) is in general a complex function,

If we take W(T) to be a real function of time, then it follows that

ZR(OO) = ZR(-oo)

ZI (w) = -ZI (-00)

(an even function of 00)

(an odd function of 00).

If the velocity of a particle passing through a component is close to

the velocity of light, then the wake potential is causal, or nearly

so. That is, W(T) =0 for T < O. Then we can show that ZR(oo) and

Zr(oo) are related by the Hilbert transform,

1 JooZR(W
1

)

ZI (00 ) = - I doo I •
7T w-w

-00

( 3)

Thus a knowledge of ZR(w) is sufficient to determine ZI(oo). However,

the wake induced in a component by a charge will not vanish ahead of the

charge. The assumption of a causal wake potential also implies that

00

WIT) = ~ ~ZR(W) COSWT dw.
o

(4)

Under the assumption that I(t) is a real function of time, the loss

parameter k(a) can also be related to the real part of the impedance

function by
00
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For a Gaussian bunch this reduces to

(5)

Application to Resonant Modes

For a high-Q parallel resonant circuit, we have

R
Z(w) = 1+j2Q<5

Z (w) = _R_-=-
R 1+(2Q8) 2

where <5 = (w - wO)/wO. From this relation and Eq. (4) in the preceding

section we derive for the nth mode,

w(-e) = 2kn cos wn T

2

= ~n (~)n
V

k
_ n

n - 4W
n

where Vn is voltage gain for a non-perturbing test charge when Wn is

the stored energy. The total wake potential for a resonator is the sum

over all modes,

W(T) = 2 I kn COSWnT
n

The total loss parameter for a bunch with bunch length at is

(6)

(7)

Two computer programs exist for computing wn and kn for the funda

mental and higher-order longitudinal modes in cavities and structures.
1The program KN7C computes modes for a periodic structure characterized



130

by the four parameters a, b, g and d shown in Fig. 2. A single resonant

cell can be modeled by setting d - g »a. Similarly, the program

SUPERFISH2 computes modes for a single axi-symmetric cavity having any

boundary in the r-z plane. That is, the function r(z) representing the

surface can be arbitrary, even multiply connected. However, any cross-

section in the r-¢ plane must be a circle. In addition to values for wn'

kn and Qn' the E and H fields at any point in the cavity can also be ob

tained from the output. By putting a taper in the beam tube as shown at

the right in Fig. 1, the loss to small discontinuities such as a gap or

iris can be obtained from SUPERFISH, even though there are no standing-

wave modes in the gap or iris region.

An example of the power of SUPERFISH is its application to the com

putation3 of modes in the RF cavities for PEP and the proposed LEP stor

age ring (which uses PETRA-type cavities scaled to 353 MHz). Fig. 3

shows the cavity dimensions, and Fig. 4 gives sketches of the electric

field patterns for the first 9 higher-order modes in the PETRA-type ca

vity. Table I gives numerical values for the properties of the 19

standing-wave modes below cutoff of the beam tube. These results define,

in fact, the impedance function for this RF cavity. For large rings

such as PEP or PETRA the impedance of the RF system is the major part

of the total ring impedance. Thus for these rings there is little un

certainty as to the ring "impedance, since the largest contribution can

be computed with good accuracy. Finally, Fig. 5 shows how the loss

parameter for loss to higher order modes (k hom ) and the total loss

parameter (ktot ) for these cavities depend strongly on bunch length.
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Table I

PETRA CAVITY MODES

Mode Number Frequency R/Q Qo 3 k

and Type (MHz) (ohms) ( x 10- ) (Vfpc)

1 Even 11,00 359.2 250.4 47.2 0.1413

2 Odd 11,11 525.0 55.6 40.5 0.0458

3 Even 21,20 886.5 9.4 71.5 0.0130

4 Odd 22,11 974.0 44.2 26.1 0.0677

5 Even 22,22 1221.1 17.0 39.8 0.0327

6 Odd 21,31 1237.4 4.1 26.5 0.0080

7 Even 33,00 1396.0 7.7 99.5 0.0168

8 Odd 32,31 1466.1 2.3 24.6 0.0054

9 Odd 22,33 1564.8 5.5 20.9 0.0134

10 Even 21,42 (31,22) 1588.0 6.6 38.2 (68.5) 0.0165

11 Even 32,42 1700.6 4.6 71.4 (66.7) 0.0123

12 Even 33;40 (43,20) 1854.7 1.9 -- (59.9) 0.0054

13 Odd 43,31 1888.3 4.3 71.4 ? 0.0129

14 Even 24,40 1931.5 0.2 108.5 0.0007

15 Odd 44,11 1990.3 6.6 23.4 0.0206

16 Odd 12,53 2035.5 1.4 18.1 (70.4) 0.0045

17 Even 43,42 2107.3 0.3 72.8 0.0011

18 Odd 32~31 2220.0 0.4 70.2 0.0016

19 Even 34,42 (44,22) 2261.2 6.2 78.2 0.0219

Cutoff Frequency (2295)

20 Odd 43,53 2355.4 0.0030

21 Even 2372.3 0.0002

22 Even 2416.9 0.0005

23 Odd 2429.2 0.0012

24 Even 2492.2 0.0036

25 Even 2558.8 0.0001

26 Odd 2587.6 0.0002

I
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A transverse version of KN7C has just been completed~ This code will

calculate the deflection modes for the periodic structure shown in Fig. 2.

The first use of the program will be to compute the transverse deflection

mode for the SLAC two-mile linac in order to predict the emittance growth

for single bunches. This computation is important for predicting the

luminosity that can be achieved by the proposed linac collider project.

Measurement Techniques

Figure 6 shows the measurement method, originally proposed by

Sands and Rees 5, that has been used to measure the loss parameter k(a)

for the PEP ring components. Elaborations of this method were also

used at PETRA and CESR6. In this method, an approximately Gaussian

pulse is sent along a wire on the axis of the component to be tested.

The pulse will interact with any mode having (in the absence of the

wire) an Ez field on the axis. The excited fields or modes will induce

a secondary pulse, Is(t), on the wire. As shown in Fig. 7, the net pulse

I1(t) observed at the output of the component is a superposition of

Is(t) and the incident pulse IO(t): I1(t) = IO(t) + Is(t). The

incident pulse is obtained by substituting a smooth reference pipe for

the component. If the incident pulse could be made arbitrarily short

(a delta-function), then for t > 0, Is(t)

to the wake potential w(t).

The total loss parameter is given 5 by

2Z Jk = q~ Io(t) Is(t) dt

q = Jlo(t) dt

where Zo is the characteristic impedance of the reference pipe with

the wire in place. By using incident pulses of different length, the
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loss can be measured as a function of bunch length. Using this measure-

ment method, the loss parameter k has been measured for all PEP compo

nents at a bunch length of 2.3 cm. Detailed results are given in Ref. 7.

Some representative results for gaps, tapers and chambers are shown in

Fig. 8. By adding up the loss parameter for each component in PEP, a

total loss parameter of k ~ 35 V/pC is obtained for the whole ring at

o = 2.3 em. Of this total, 24 V/pC comes from higher modes in the RF

cavities and about 11 V/pC from the remaining vacuum chamber components.

Thus, the ring impedance is strongly dominated by the impedance of the

RF cavities. For two 55 mA beams with Tb = 2.45 ~s, the total power

loss from Eq. (1) is 500 kW.

8Measurements and theory have been compared for several cylindrical

cavities with beam tube holes. For example, k(o) was measured and

computed for the cavity shown in Fig. 7 for bunch lengths of 110, 240

and 350 ps. Using Eq. (7) with output from either KN7C or SUPERFISH

for wn and kn (the two programs give consistent results), values of

k(o) = 0.144,0.054 and 0.018 were computed for these bunch lengths.

The measured values were k(o) = 0.146, 0.055 and 0.018 with a resolution

of about ±.003.

A more detailed comparison can be made between theory and measure

ment using the difference function Is(t). Within the pulse the measured

potential for I «I iss 0

From Eq. (2) the computed potential for a Gaussian pulse with peak
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amplitude Ip is

The wake potential is obtained using Eq. (6) and the output of KN7C

or SUPERFISH. In Fig. 9 the measured and computed functions are com

pared, with no adjustable constants used in obtaining the theoretical

curves. The agreement enhances confidence both in the theory and in

the measurement technique.

Frequency domain measurements can also be made using the stretched

wire technique with a frequency sweep generator in place of the pulse

generator at the input taper in Fig. 6. The transmission through the

component is monitored by a detector at the output taper. At the fre-

quency of each resonant longitudinal mode, a dip in the transmitted

power is seen. From the area under the dip, the R/Q for the mode can

be computed. The Q of the mode is, of course, drastically lowered by

the presence of the wire, but R/Q can still be obtained if the modes

do not overlap. An equivalent statement for pulse measurements in the

time domain is that effects depending on the short-range wake are

measured correctly, but the time decrement for the long-range wake is

too fast. By moving the wire off-axis, the R/Q' S can be measured for

deflection modes using the same technique. Reasonable agreement is

obtained with analytic results in those cases where a comparison is

possible.

In principle it is possible to make either time or frequency domain

measurements for the case v < c using the wire technique. The "wire"

in this case must be a loaded line (e.g., helix wound on a thin dielectric

rod) with a phase velocity equal to the desired particle velocity.
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Again, only the R/Q's of resonant modes can be measured in the frequency

domain, losses, corresponding to the short-range wake in the time domain.

Wake Potential for the SLAC Linac

The structure shown in Fig. 2a is a reasonable approximation to

the disk-loaded structure of the two-mile SLAC linac. Using output

from KN7C in Eq. (6) for 416 modes, the wake function for SLAC was com

puted9. The result is shown in Fig. 10. In addition to the wake

computed from the modes, the result also includes the contribution of

an "ana1ytic extension", which takes into account the effect of modes

beyond the highest frequency reached by the computer calculation. The

analytic extension uses the Sessler-Vainshtein optical resonator model

described in Ref. 1. It covers the frequency range from w = 6.1 x 1011

(for the 416th mode) to w = 8 x 1013 . (The fundamental mode is at

w = 1.8 x 1010 .) The contribution of the analytic extension is important

only for the first picosecond or so.

Using Eq. (7) the average energy loss per particle can be com

puted. The computed loss is 40 MeV per electron, while the measurements

give 50 MeV. Considering the possible experimental errors in the

measurement, this is reasonable agreement. The average energy loss

is related to the intercept of the wake potential at t = O. From Eqs. (6)

and (7), w(O) = 2k for a point bunch. The time dependence of the wake af

fects the detailed shape of the energy spectra. In Ref. 9 it is shown

that detailed agreement between measured energy spectra and spectra comput

ed from the wake in Fig. 10 is very good, if the amplitude of the computed

wake is multiplied by a factor of 1.3.
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The SPEAR Impedance Function

The impedance function for SPEAR is shown in Fig. 11. The form

of this function was obtained as follows. From data lO on bunch lengthening
in SPEAR, it can be shownll that at high frequencies the real part of

-0.68the impedance must vary as ZR(w) ~ w . However, at low frequencies

the impedance must fall to zero. Quite arbitrarily the low frequency

portion is represented by a linear dependence on frequency. Thus,

ZR(W) has a maximum value Zo at some frequency Wo = 2nfO where the two

curves intersect. Using Eq. (5), lO and fO can be adjusted to fit

measured energy loss data for SPEAR. This loss is represented quite

accurately for SPEAR by

k(a) =[50 az(cm)] -1.21 V/pC. (8)

The result of the fitting procedure (described in Ref. 12) is lO = 8000 ohms

and fo = 1.2 GHz.

The imaginary part of the impedance can be computed, if the real

part is given, using the Hilbert transform in Eq. (3). The result 13 is

shown in normalized form in Fig. 11. The ratio Z/n is also of interest

in predicting the threshold for various beam instabilities, where n is

the harmonic number of the revolution frequency (1.28 MHz for SPEAR).

From Fig. 11 we readily compute ZR/n = 8.5 ohms. The total impedance

Ili/n is on the order of 20 ohms.

Comparison of SPEAR and PEP Impedances

Some impedances for SPEAR and PEP are compared in Table II below.

Using Eq. (7) and the definition of the loss impedance, Zf = Tbk(a),
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the total SPEAR impedance at a bunch length of 2.0 cm is computed to

be Z~ = 17 Mn. Computer calculations using SUPERFISH and KN7C give a

loss impedance of 3 f'1D for hi gher-order modes in the RF cavi ties. Thi s

leaves 14 MD for the vacuum chamber loss. Thus, losses in the vacuum

chamber external to the RF cavities are dominant for SPEAR. PEP has

six times more RF cavities than SPEAR, but the beam hole size is some-

what smaller on the average and the loss per cavity is about 24% greater.

Remember also that the loss impedance for a given component scales in

proportion to the time between bunches: Tb(PEP)/Tb(SPEAR) = 3.13.

Applying these factors gives a loss impedance for the PEP cavities of

69 M~. The loss for the PEP vacuum chamber, on the other hand, has been

measured to be about 8% of the loss per unit length for SPEAR. The

total circumference of PEP is greater by a factor of 9.4.

Multiplying the SPEAR vacuum chamber impedance by 3.13 x 9.4 x .08

gives 33 Mrt for PEP. We see that for PEP the cavity impedance is about

twice the vacuum chamber impedance. Estimated values for ZR/n and

IZ/In are also given in Table II for SPEAR and PEP.

TABLE II

Impedances for SPEAR and PEP

at 0" = 2.0 cmz
SPEAR PEP

Z.Q,(rf) Mrt 3 (18%) 69 (68%)

Z.Q,(vac) M~ 14 (82%) 33 (32%)

Z~(tot) ~1SG 17 102

ZR/n ohms 8.5 1.8

Illin ohms ~ 20 ~ 4
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Impedances, Wakes and Stability

Analytic stability criteria have been developed so far mainly in

the frequency domain. A solution in the form of an expansion in modes

is first obtained, with mode frequencies that may be complex. As some

parameter (such as charge per bunch) is increased, the imaginary part

of the frequency for a particular mode may change sign, indicating a

transition from damping to exponential growth. However, in order to

carry the procedure past the stage of a very general expression,

simplifying assumptions are usually introduced which limit the predictive

power of the model.

In the time domain, non-linear problems are usually attacked by

computer simulations using a limited number of superparticles. The

coupling between particles is characterized by the wake potential,

rather than the impedance. It is difficult, however, to develop analytic

criteria for stability. A recipe for obtaining stability criteria

similar to that outlined above for the frequency domain, does not appear

to exist. The situation may be changing with the recent interdisciplinary

f . . 1 . d . 14 F th f t b 1 tsurge 0 lnterest ln non- lnear ynamlcs . or e case 0 ur u en

bunch lengthening an unusual time-domain stability criteria has been

developed15 , which may have an application to other aspects of the

problem of the interaction of a charged beam with its environment.
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