ep collisions

LOW BETA e p INTERACTION GEOMETRY WITH INTERLACED FOCUSING FOR ELECTRONS AND PROTONS

K. Steffen, E. Daßkowski

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

ABSTRACT

In trying to scale previously adopted ep interaction geometries 1 to higher energies, the increasing dimensions make it more and more difficult to obtain a small proton beta function at the interaction point. To overcome this difficulty, the <u>interlaced focusing</u> scheme is suggested here and illustrated in a 30/900 GeV design example. The scheme, in this case, reduces the proton beta function by an order of magnitude.

PROBLEM

For electron storage rings with conventional rf, the energy scales with about the square root of the radius²⁾, while for proton rings it scales, of course, linearly. Thus, with the two machines in the same tunnel, the ratio E_/E_ increases with the tunnel size. For a tunnel length of 6 km, for example, the ratio is 30, with electron and proton energies of 30 GeV and 900 GeV, respectively. This large energy ratio allows to separate the beams, after head-on collision, by a common bending magnet that bends the electron beam away from the almost unaffected proton beam. At higher energies, however, this magnet gets longer and must be placed further away for shielding the interaction point (I.P.) against its synchrotron radiation. When assuming that only after this magnet, where the beams are already separated, the first proton quadrupole can be placed, it will be far away from the I.P. and thus cannot produce a sufficiently small beta function at this point. In our example of the 6 km ring, the quadrupole distance will be of the order of 45 m. Then; for a β_{max} = 750 m at the quadrupole, the minimum beta will be $\beta^* = 2.7$ m while, for maximum luminosity, is should be about equal to the minimum bunch length, i.e. an order of magnitude smaller.

INTERLACED FOCUSING

This raises the question whether one cannot place the proton quadrupoles <u>before</u> the separating magnet in spite of the fact that their focusing strength for the electrons is terribly large. It turns out that this is indeed possible if, at the positions of the proton quadrupoles, the electrons are focused into very narrow beam waists. The proton quadrupoles, then, act on the electron beam as sort of field lenses that do not strongly affect the electron focusing. Group IV

DESIGN EXAMPLE

As an exploratory quantitative example^{*)}, a design layout for 30 GeV electrons and 900 GeV protons is given in the attached tables and Fig. 1. It shows that, with interlaced focusing, vertical beta functions of 25 cm for the protons and 15 cm for the electrons can be obtained, with maximum beta values of 300 m for the electrons and 900 m for the protons. Fig. 2 shows a preliminary magnet layout of the interaction region, with longitudinal electron spin at the I.P.

REFERENCES

- e.g. E. Daßkowski, D. Kohaupt, K. Steffen, G.A. Voss, DESY 78/02 (Jan. 1978)
- 2) e.g. K. Steffen, Internal Report DESY PET-79/03 (March 1979)

*) using the DESY beam transport hybrid computer.

1

Fig. 2 ep interaction region with interlaced focusing and longitudinal electron spin

239

ļ

)

۱

۱

Group IV

<u>Table l</u>

Interlaced focusing, <u>electrons</u>

Lattice:

	түр	DRIF(M)	L(M)	K(1/M*M)
1 2 3	QUAD QUAD QUAD	5.69995 2.39990 3.39990	1.59998 1.59998 2.59998	-0.22202 0.25529 -1.30396
4 5	QUAD	4.39990 1.00000	1.59998	0.28374
6 7	QUAD	4.39990	2.59998	0.87997
8 9	QUAD	1.00000 5.50000	1.59998	0.17999

Envelopes:

EPS	(MM*MR	AD) =	100.0000		100.0000
CHR	• ABERR •	2	0		0
NR.	ТҮР	EX(MM)	EX!(MRAD)	EZ (MM)	EZI(MRAD)
0		12.00000	0.00000	4.00000	0.00000
1	DRIF	48,99195	8.07949	142,55492	24.99016
ī	QUAD	77.85590	29.67649	140.23233	-27,75457
2	DRIF	149.10845	29.69670	73.64395	-27.73050
2	QUAD	145.48942	-33.97140	49.74540	-3,73678
3	DRIF	30.08086	-33.81534	37.66598	-3.30999
3	QUAD	28.91600	32.44930	37.60606	4.10057
4	DRIF	172.36270	32.62790	56,86482	4.55996
4	QUAD	159.57556	-47.63253	87.06653	35.43959
5	DRIF	111.94478	-47.62828	122.51150	35.44880
5	QUAD	68.48078	-9.86554	131.88533	-24,43151
6	DRIF	25.88347	-9.19429	24.61618	-24.10334
6	QUAD	26.22208	8.33019	24.94792	24.41056
7	DRIF	66.88121	9.03880	138.46601	24.72693
7	QUAD	104.18974	39,92231	134.28014	-29,69233
8	DRIF	144.11525	39,92782	104.59046	-29,68628
8	QUAD	171.26139	-7.30802	78,41348	-4.27896
9	DRIF	131,10664	-7,29152	55,32560	-4.08276
9	DRIF	123.81747	-7.28668	51.27471	-4.01650

١

т	ล	ь	1	е	2
۰.	u	-		-	_

Interlaced focusing, protons

Lattice:

TYP	DRIF(M)	L(M)	K(1/M*M)
1 QUA 2 QUA 3 QUA 4 QUA 5 QUA 6 QUA 7 QUA 8 QUA 9 DR I	D 5.69995 D 2.39990 D 3.39990 D 4.39990 D 1.00000 D 4.19995 D 4.39990 D 1.00000 F 5.50000	1.59998 1.59998 2.59998 1.59998 1.59998 2.59998 1.59998 1.59998 1.59998 1.00000	-0.00760 0.00840 -0.04347 0.00953 -0.00937 0.02933 -0.00893 0.00713 0.00000

Envelopes:

E P S C HR	(MM*MRAD ABERR.) = =	100.0000		100.0000
NR.	TYP	EX(MM)	EX!(MRAD)	EZ(MM)	EZ!(MRAD)
0		20.00000	0.00000	5.00000	0,00000
1	DRIF	34.81718	4.09277	114.10863	19,98079
ī	QUAD	41.97993	4.84831	144.87240	18,41124
2	DRIF	53,91932	5.07355	189.06485	18,41659
2	QUAD	61.50025	4.38027	220,67469	21,16695
3	DRIF	76.59249	4.48620	292.64431	21.16904
3	QUAD	100.43072	14.29240	303.07541	-13.34251
4	DRIF	163,37462	14,31396	244.37395	-13,34032
4	QUAD	184,19747	11,66188	225,93066	-9,76096
5	DRIF	195.86010	11.66334	216,17015	-9,76003
5	QUAD	216.95106	14.75334	198.03071	-12,86920
6	DRIF	278.92110	14.75619	143,99630	-12.86037
6	QUAD	288.83703	-7.25494	123.96976	-2.79765
7	DRIF	256.92050	-7.25276	111.71675	-2.77061
7	QUAD	248.21491	-3.65010	106.03585	-4.31677
8	DRIF	244,56514	-3.64943	101.72345	-4.30784
8	QUAD	236,51628	-6.39648	95.75277	-3,16647
9	DRIF	201.34908	-6.39117	78,54746	-3,08163
9	DRIF	194.95854	-6.38988	75.47657	-3.05971

8