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General Features of the Confinement Problem

I should like to begin my talk by discussing some
general features of the confinement problem, following
which I shall outline a selection of contributions made
during the past year.

Nature of the Vacuum in the Confined Phase

Most if not all workers on the subject are now in
agreement as to the general properties of the vacuum in
a confined system. At the present time, various mech-
anisms have been suggested whereby the vacuum actually
acquires such properties but I believe it is fair to
say that none of these mechanisms has received general
recognition as being the correct one.

The confinement vacuum is characterized by the
inability of color electric flux to lose energy by
spreading out, as was originally suggested by 't Hooft
and Kogut and Susskind. 2 'If two quarks are separated

FIG. 1.

Tube of flux between two quarks.

by a large distance, they will thus be joined by a tube
of flux. Since the flux carries energy, the system
will possess an energy proportional to the distance
between the quarks, and we have confinement. The tube
of flux represents the "string" of the dual model--a
model found to be successful qualitatively but not
quantitatively, in explaining many features of hadron
physics.

The behavior just discussed is precisely the ana-
logue, with electric and magnetic quantities inter-
changed, of the behavior in an ordinary superconductor
or, what is the same thing, in a system with camplete
Higgs symmetry breaking. (By Higgs breaking we do not
necessarily imply that actual Higgs particles are pre-
sent; we refer to the type of symmetry breaking exem—
plified thereby.) 2An ordinary superconductor repels
magnetic flux. It is possible to force magnet_lc flux
into a superconductor and, if one does so, it is
squeezed into quantized vortices containing 2:;'1 units,

n being an integer. (For a non-Abelian theory, n is
only defined modulo N.) In fact, magnetic vortices in
the ordinary supercmductlng syst?m were studied first,
by Nielsen and Olesen3 and Nambu.? The extension to
electric vortices was made later.

wWithin the magnetic vortex, the vacuum is in a
normal, not a superconducting phase. Similarly, the
vacuum within an electric vortex is in the normal, not
the confined phase. The situation represented by
Fig. 1 is for well-separated quarks; it describes
resonances of high angular-momentum, where the centrif-
ugal force keeps the quarks apart. For light hadrons
the length of the vortex may be camparable to its
width. In any case, we have a region of normal phase
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containing the quarks and the electric flux associated
with them,surrounded by a superconducting region into
which the flux cannot penetrate. This is the structure
described phenavenologically by the M.I.T. or S.L.A.C.
bag, and in the related, samewhat less phenomenological
model, of Lee and Friedberg.

An ordinary superconductor may be regarded as a
ccherent superposition of charg eg objects ( r pairs
or Higgs particles). Mandelstam® and 't Hooft® pro-
posed that the confined phase might be realized as a
coherent superposition of magnetic monopoles. (A non-
Apelian theory differs fraom an Abelian theory in that
monopole-like states may be constructed from the fields
themselves; they do not have to bé introduced explic-
itly.) I should now like to refer to same more general
work by 't Hooft, /8 which explores the superconductor-
confinement analogy.

A nuber of years ago, Wilson? proposed charac-
terizing the confinement vacuum by the operator

W= %Tr: Exp { fax % Aﬁ‘(x)}: (1)

the integration to be taken round a large closed curve.

The t*'s are the SU(N) generalizations of the Pauli
matrices. The symbol : : indicates that the expo~
nential is to be expanded and the t's  ordered along
the path. The operator (1) simply creates an electric
flux tube, of strength equal to the color charge on one
quark, along the path of integration. We have noted
that such tubes exist as physical objects in a confined
vacuum. Hence, if the tube were infinitely long in a
given direction, one could characterize the confine-
ment vacuum as being an eigenstate of the nunber of
such tubes. (The number is, in fact, only defined
modulo N.) The matrix elemen
fore vanish in a confinement vacuum. If the tube,
instead of being infinite, were along a large loop, we
would expect the matrix element to be small. Closer
examination shows that "small" means Exp. {-const. A},
"not small" means Exp. {-const. P}, where A and P
refer to the area and perimeter of the loop. Thus

<0|w|0> = Exp {-const. A}, Confinement, (2a)

<0|w|0> = Exp {-const. P},  No Confinement. (2b)
't Hooft proposed constructing a similar operator
(M) for creating a tube of magnetic flux. The ana-
logue of (2) would be
<0|M|0> = Exp {~const. A} Camplete Higgs
breaking (3a)
<0|M|0>

= Exp {~const. P} No camplete Higgs

breaking (3b)

As far as we are aware, Egs. (3) provide the only
gauge-invariant definition of complete Higgs symmetry
breaking. Physically, a system with complete Higgs
breaking is one which can support vortices of magnetic
flux.

For an SU(2) gauge theory in a phase without
massless particles, 't Hooft showed that the combina-




tions (2a), (3b) or (2b), (3a) were the only ones
possible. In other words, we have complete Higgs sym—
metry breaking or confinement.

If we allow massless particles, two more phases
are possible (as far as we know). The four possible
phases are thus

i) The "perturbation theory" phase with physical

massless gluons.

ii) The "Georgi-Glashow" phase, with partial Higgs
symmetry breaking and a remaining U(l) invar-
iant group. The phase contains charges and
't Hooft monopoles as well as photons.

The phase with complete Higgs symmetry break-
ing which can support vortices of magnetic
flux. Such vortices would appear as particles
or resonances.

iv) The phase with confinement, which can support

vortices of electric flux.

In all this work, we notice a striking duality
between electric and magnetic quantities. Phases 1)
and ii) are symmetrical under electric-magnetic inter-
change, phases iii) and iv) transform into one another
under such interchange. I have studied the question of
electric-magnetic duality and have come to the conclu-
sionl0 that there is complete duality as long as one
asks kinematic questions, i.e., as long as one does not
ask for the precise form of the Hamiltonian. As far as
we know, there is no dynamic duality. The elementary
particles are electrically, not magnetically changed.

't Hooft also studied the case of (2+1) dimensions
in detail. The system is now simpler, since the mag-
netic vortices are replaced by particles, and the
characterization (3) is replaced by the presence or
absence of a glabal conservation law (modulo N) for
such particles. Transformation between the Higgs and
carbined phase corresponds to the particles becaming
tachyonic. 't Hooft constructed a simple (2+1)-dimen-
sional model in which these features were realized.

Iet us finally emphasize that the above remarks,
and much of the work to be described later, refer to a
system without actual quarks. In most treatments of
confinement, quarks are introduced later, on the
assumption that quark couplings are weak. If quark
couplings had been strong, the quark model would prob-
ably not have worked; a baryon, for example, would have
consisted of a large nunber M of quarks, and M-3 anti-
quarks. The question of why quark couplings may be
regarded as weak brings up to our next general topic.

iii)

The 1/N Expansion

't Hooftll has pointed out that non-Abelian SU(N)
theories simplify if we consider the limit

N+w®, g0, g2 fixed. (4)

In that limit planar diagrams, no matter how campli-
cated, are all equally important, but non-planar dia-
grams are down by factors of N-1. Furthermore, diagrams
containing quark loops are also down.

FIG. 2. Planar and non-planar diagrams.

In lowest order, a "string" consisting of a flux line
stretched between a quark and an anti-quark would not
separate into two strings. Hence if we could under-
stand confinement in the 1/N approximation, we should
also understand several predictions of the string
model, such as

i) The narrowness of meson resonances,

ii) The existence of exchange-degenerate meson
trajectories,
iii) The Iizuka-Ckubo-Zweig rule.

In general, we should understand why quark coup-
lings are weak. Lipkin had, in fact, suggested the
1/N approximation as an explanation for weak quark
couplings in 1968.

Since nature appears to possess the features men-
tioned above, we may suppose that the 1/N expansion is
reasonably accurate for N = 3.

In two dimensions (1 space + 1 time), one can
solve Q.C.D. without making any approximations besides
the 1N app::'oximation.12 The solution exhibits many of
the features found in the real world, and provides a
model useful for many purposes. In two dimensions
confinement is autamatic; the attractive Coulamb
potential between a quark and an anti-quark increases
proportionally to the distance. The two-dimensional
model can therefore not help us understand confinement
in four dimensions.

At present it does not appear possible to solve
Q.C.D in four dimensions without making approximations
in addition to the 1/N approximation. Nevertheless,
the 1IN limit will probably still provide a simplifica-
tion, and this limit certainly helps us to understand
many features qualitatively.

Following these general remarks, I should like to
summarize same contributions made during the past year.
My selection criteria can at best be arbitrary, as I am
forced to amit several interesting contributions. I
shall limit my selection to papers concerning Q.C.D as
such. Two-dimensional or lattice models will be ex-
cluded except where their results are immediately rele-
vant to Q.C.D.

The Instanton Vacuum

Polyakov had originally hoped to understand con-
finement by considering the vacuum as a Euclidean four-
dimensional plasma of instantons. Unfortunately the
short-range nature of instantons in four dimensions
appears to rule out such a possibility. As far as I am
aware, there is general agreement on this point. In
the above statements, it has been assumed that the
infra-red divergence has been cut off by limiting the
instanton size. One cannot say that infinitely large
instantons could not give confinement but, at present,
it appears that one cannot handle such instantons until
the confinement problem is solved.

In 1977, Callan, Dashen and Grossl13 suggested that
it might be possible to understand confinement by sup-
posing the vacuum to be a four-dimensional plasma of
merons. These dbjects are dbtained by smoothing out
the singular solutions of De Alfaro, Fubini and
Furlanl and, unlike instantons, they do not satisfy
the field equations everywhere. Two merons are topol-
ogically equivalent to one instanton, hence their name.
Merons are long-range dbjects. The fields associated
with them fall off like r~2 at large r. A meron plasma
may therefore confine; in fact, a fixed-time cross-
section of a meron plasma is essentially the monopole
plasma mentioned earlier.

At the present time, quantitative calculations
involving merons have not been performed. More recent-
1y, c.n.G. 1> suggested that there might be an inter-
mediate scale of distances where semi-weak-coupling
calculations (perturbation theory + instantons) were
adequate, and which might include the radii of low-
lying hadrons. At larger distances, where confinement
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forces came into play, perturbation theory would be
campletely inadequate.

C.D.G. based their treatment on the instanton
plasma in an external electric field. As instantons
are the four-dimensional analogue of magnetic dipoles,
the plasma would be paramagnetic-p and e~1, which are
equal by Lorentz invariance, would be greater than cne.
The external field therefore reduces the instanton den-
sity. The reduction is most important for large
instantons, and a sufficiently strong field cuts off
the well-known infra-red divergence.

The curve of D against E is shown in Fig. 3.
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FIG. 3. Plot of D against E in the C.D.G. calcu-
lation.

When E is large the instanton density is small, and
D~ E. As D and E are reduced, E becames larger than
D; ultimately the infra-red divergence takes over and
E approaches infinity. With an infra-red cutoff, the
curve would turn back and pass through the origin.

For a reasonable cutoff, C.D.G. find that D/E, or
€, approaches 1/10 as D and E approach zero. Recalling
that confinement is the electric-magnetic dual of
superconductivity, which is sometimes defined as per-
fect diamagnetism, we can interpret a zero value of €
as confinement. C.D.G. conjecture that a plasma in
which an instanton was allowed to "split" into two
merons would give a value « instead of 1/10 for e.

The curve of D against E would then be represented by
the dotted line for small E.

The curve in Fig. 3 now recalls the PV curve for
a fluid and, in fact, it implies the existence of a
first-order phase transition, If the vertical dashed
line in Fig. 3 is drawn so that the two areas between
it and the DE curve are equal, the system could exist
in two phases represented by the points 1 and 2.

Phase 2 is the normal phase (e x 1), with non-zero
electric flux density, which exists within the hadron;
phase 1 is the confining phase (e = 0) with zero flux
which surrounds the hadron.

In order to calculate the energy density of the
confining phase (the "bag constant"), it would be
necessary to handle high-density plasmas of instantons
and merons. C.D.G. do not attempt such a calculation.
For the rest, they regard their work as a justification
of the M.I.T. bag calculations, but do not feel that
they have yet taken it to a point where they can refine
the calculation. They make an estimate of the thick-
ness of the layer which separates the two phases at
the boundary of a hadron, and conclude that it is
small compared with the hadronic radius. In a more
recent paper,]-6 C.D.G. calculate the rumning coupling

constant, as a function of distance, given by the
instanton plasma. They find that their calculation
provides a reasonably good interpolation between the
short-distance renormalization-group behavior and the
large~distance behavior given by the strong-coupling
lattice-gauge theory. They thus conclude that instan-
ton effects are sufficient to take us into the strong-
coupling regime.

Baryons in the 1/N Approximation

The fact that a baryon consists of N quarks makes
the 1/N approximation less straightforward for baryons
than for mesons, Fach vertex gives rise to a factor
N~%, but there are N such vertices for each interaction
involving one baryon.

Wittenl7 has shown that it is nevertheless possi-
ble to treat baryons in the 1/N approximation; I may
remark in passing that his paper provides a very clear
outline of the 1/N approximation itself. The wave-
function of a baryon is symmetric in all variables
except color. One may therefore neglect color and,
instead, pretend that the quarks were bosons. As one
can put all the particles in the same state, the den-
sity increases with N. The interaction of a given
quark with any other quark is small, but the interaction
with all quarks together is not. Under these circum—
stances, quantum fluctuations average out, and one may
replace the (N - 1) quarks interacting with the given
quark by a (color) charge cloud. Witten shows that
such a Hartree-like approximation becomes exact in the
limit N » o,

As with mesons, one can perform calculations with-
out further approximation in two-dimensional Q.C.D., and
one can obtain qualitative information about four-
dimensional Q.C.D. The average kinetic energy and the
average potential energy of each quark approaches a
constant limit as N approaches infinity, so that the
baryon mass becomes proportional to N.

Witten also considers baryon interactions. The
baryon-baryon and the baryon-meson S-matrices remain
finite as N approaches infinity, unlike the meson-meson
S-matrix which approaches zero. (The question of baryon
widths is still unsettled.) According to the string
picture, the interactions involving each string are

FIG. 4, String model of a baryon.

weak, but there are a large number of strings. As the
form of the baryon itself depends on N, it is difficult
to see how we could obtain a string picture as a 1/N
limit. This may perhaps explain why the original dual
model was so much more successful in dealing with mesons
than with baryons.

Witten shows that the cross-section for the reac-
tion meson + meson <> baryon + anti-baryon, at fixed
baryon velocity, behaves like e N for large N. This
is because N Q0 pairs have to be created simul-
taneously. On the other hand, the cross-section for
the reaction at fixed baryon momentum approaches a
constant; annihilation at rest is not forbidden.

The behavior of the scattering and annihilation reac-
tions do not contradict crossing symmetry.
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Phases of Gauge Theories with Fields in the
Fundamental Representation

The next contribution concerns calculations
Fradkin and Shenkerl8 and by Banks and Rabinovici
in a lattice-gauge theory with fields which trans-
form like the fundamental representation of the gauge
group, i.e., quark-like fields. Recall that the
conventional treatment of confinement assumes that
there are no particles in the fundamental represen-
tation, i.e., no quark-like particles. Actual quarks
are later introduced perturhatively.

If quark-like particles are present, a vortex _
at electric flux can break up by the creation of QQ
pairs (Fig. 5). The vacuum can no longer support

FZZ3% s
/’;//'_"\\:\\ é“a «
1/r "W 2 6\\
N w 2 AXY
\ | —_— N )
(K " ! |
\ / W\ )"
W “! AR "
\\\\\N ‘,/’// \ A 7/

NSt d * G::gé’

FIG. 5. Break-up of a vortex of electric flux
by the creation of QO pairs.

such vortices, and the Wilson integral behaves like
e P—a feature that has been stressed by Susskind.

In fact our ability to recognize confinement experi-
mentally depends either on the existence of conserved
quantum nunbers external to Q.C.D. (baryon number
and flavor) or on the weakness of quark couplings.
The latter feature gives rise to near-linear Regge
trajectories associated with strings of flux.

In the Weinberg-Salam model, the quark-like
fields acquire non-zero vacuum-expectation values.
If the coupling is weak we understand the meaning of
this statement and can deduce quantitative results
fram it. But, in general, no one has found a gauge-
invariant, and therefore physically meaningful,

definition of the Weinberg-Salam vacuum. The criterion

used for complete Higgs symmetry breaking by adjoint-
representation (non-quark) fields, namely the ability
to support vortices of magnetic flux (Nielsen-Olesen
vortices) does not apply here. In the presence of

actual fundamental-representation (quark-like) fields

without " rnal” conserved quantum numbers, there
appears to be no fundamental distinction between
the confinement and Weinberg-Salam phases.

Fradkin and Shenker and Banks and Rabinovici
examined, inter alia, an Abelian lattice gauge model
with the action

= Spireor™s Z [o()Dlx, z+e }¢'(xte )], 4] =

where D is the Wilson link operator. If g is large,
¢ has a preferred phase and we have a Higgs vacuum;
if B is small we do not. 6 had previously
tﬂd.led by Elnh and Sav1t, Israel and
Nappi,<- and S:anlalr, who showed that the Wilson
criterion no longer applied.
In Fig. 6, the weak-coupling Higgs region is
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FIG. 6. Phase diagram for the Abelian lattice
Higgs model.

the large B, small g region; the strong-coupling
confinement region is the small B, large g region.
Fradkin and Shenker showed that, within the shaded
region, which joins the Higgs and confinement regions,
all Green's functions are analytic. - The Weinberg-
Salam and confinement phases are thus not differen-
tiated. There is a second phase, the ordinary
perturbation theory phase with real photons.

In the case where the matter field is multiply
charged, which corresponds to a non-Abelian theory
with non-quark-like Higgs particles, Fradkin and
Shenker found that the Weinberg-Salam and confinement
phases were distinct.

Thus, in an SU(2) theory with quark-like field
and no extraneous conserved quantities, the phase
classification will be

i) the perturbation theory phase,

ii) the Georgi-Glashow phase,

iii) the phase with complete Higgs symmetry
breaking by non-quark-like fields. This
phase supports Nielsen-Olesen vortices.

iv) the Weinberg-Salam—confinement phase.

Phase iv) has no lon —range order. This has

led Banks and Rabinovicil? to re-examine the possible
"deconfinement" which is expected to occur at high
temperatures. In a lattice model with quark-like
fields, they conclude that such deconfinement does
not occur. It is an open question whether the exist-
ence of external conserved quantum numbers changes
this last conclusion.

Non-Abelian Gauge Theories and the Dual String

During the past year, there has been considerable
activity in the direction of formulating gauge-theory
dynamics in terms of Wilson loop operators. Progress
has been ga g% by Gervais, Jaeckel Neveu,23 =
Polyakov Makeenko and Migdal and Egudui.30
The cbvious question is whether these operators
satisfy equations similar, or possibly identical,
to those of the string creation operators of the dual
model.

The string operators are functionals of the path
P = xH(s), whose s is an arbitrary parameter which
varies along the string. They satisfy the equations
(see Fig. 7)

2 0x (s)12

e + 5 { x};s v ye) = mter-  (5)
{6x (s)} 4mo, action terms,
ax (s)
T— W v{P} = 0 (5b)
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g dx*
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FIG. 7. Definition of quantities in Egs. (5).

The constant o is the slope of the Regge trajectories.
The interaction terms, which have not been written
down, represent the breaking, joining and recarbina-
tion of strings.

We first treat the non-Zbelian field without
quarks. For the classical non-Zbelian field, Gervais
and Neveu show that Egs. (5), without the second term
on the left and the interaction term, are satisfied.
In the quantized theory, Migdal and Polyakov obtain,
formally, an extra term,

ax (s) 3x (t)

gN fat 8ix (5) - x () —h— —b— el Fyep)

x 1% 1%1 (P,) ™3

where y(P,) and y(P.,) are the untraced Wilson-loop
operators for the paths between s and t and between
t and s respectively. There may be additional
§—function terms due to short-distance singularities
of operator products. The delta functions could
give a contribution when s and t are adjacent points
and when a string crosses itself. With suitable
interpretation, these two contributions give the miss-
ing terms in Eq. (5) for closed strings. However,
the manipulation of singular quantities is not
straightforward and, at this time, no group claims
to have a definitive result.

If the closed-string model is derived from the
pure gauge theory, with couplings of order N1, it
will certainly give us much more insight into the
N = » limit, but it will not represent a solution of
the theory in this limit, at any rate without further
work. The simple solution of the string equation
has a tachyon and violates the Froissart bound, so
it must correspond to the wrong vacuum. The solution
with the correct vacuum has not yet been achieved.
The difficulties which occur when D # 26 are cbviously
also very pertinent.

As we have already mentioned, any approximate
solution of the theory without quarks can hopefully
be used as a starting-point for actual Q.C.D., the
quarks being treated semi-perturbatively. To the
extent that the theory without quarks corresponds
to the closed-string model, it might be expected that
the full theory corresponds to the open-strlng model,
the string being a flux tube between a QQ pair.
Gervais and Neveu show that this is partly but not
campletely correct, the difference being that the
quarks carry a finite amount of momentum at the ends
of the string.

Disappearance of the Instanton Gas

I should now like to mention another model
calculation, this time on a two—dimensional continuum
model known as the CPN-1 model. It was performed
by Witten3l with the aim of studying the importance
of instantons in a confined theory.

The instanton number is a topological invariant
defined by the integral

2 -
I raix, PR (6)
81r2 Wy

However, the expression (6) is a topological invariant
only if we impose the boundary condition Fr2 + 0, r - =,
In a confining theory, the vacuum fluctuations of

the fields cannot satisfy this requirement, other-

wise the Wilson criterion would not be fulfilled.

One may therefore seriously question the importance

of instantons in a confined theory.

Witten .proposed studying the question by examin-
ing the dependence on the coupling constant of effects
usually associated with instantons. The_only variable
parameter is the N of SU(N); 1{ N + o, g2N -+ const.,

92 would be proportional to N A real or effective

term 6FMVR vy could be present in the lagrangian

due to instantons, in which case its effects would

be proportional to exp(-g“) or exp(-N). It could

algo occur due to the failure of the boundary condition
+ 0, when its effects would depend on a power of

N. Examples of such effects are CP violation and

f—dependence of the vacuum (in a system without mass-

less quarks), or the n mass (in a system with massless

quarks) -1

CPN model possesses features analogous to

all those just mentioned for Q.C.D. without quarks

and in addition, it can be solved in the 1IN

approximation. The Lagrangian is
_ * u * iy, %
L auni i) n; + (ni 3un )(nj 9" n”) (7)
with n;:ni = 1. The integral
1 2 * uv, 1
fTr—:'['f d xau(nie a\)n ) (8)

is a topological invariant provided n, » const. at

large x. There are instanton solutloné with non~zero

topological charge. 32,33
'Adda, DiVecchia and Luscher have solved

the c® 1 model in the 1IN approximation. We shall

not discuss their results, except to mention that

the boundary condition ¢ - const., xr + o, turns

out not to be fulfilled. The solution is thus

analogous to the confined phase in Q.C.D.

Witten has shown that an effective Lagrangian,
which may be used to solve the theory in the 1N
approximation, has no instantons. He also showed
that the 6-dependence of the massei involved a
factor N-2/3 and not eV, model thus
appears to indicate that instantons may not be rele-
vant in the confined phase.

Berg and Iischer34 have succeeded in solving
the problem ?f the exact (non-dilute) instanton gas
for the CPV model, and in eliminating the infra-red
divergence. Their results are the same as those of
the instanton-free calculations just mentioned.

The instanton gas is infinitely dense, and the large
instantons have evidently destroyed the topological
distinction between states of different instanton
number. Such an approach appears to be impossible
in Q.C.D., where exact classical solutions exist for
only a very limited class of multi-instanton solutions.
In any case, explicit 1Ttroduct10n of instantons is
unnecessary in the cPN T model and, if one does
attempt to parametrize the important configurations
by means of instantons, one camnot use the dilute-gas
approximation and one must be able to handle the
infra-red divergence.
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Use of the CPN -1 model as a "guinea-pig" for
0Q.C.D. has been criticized and, at the moment, there
is no general agreement on this question,

Approximation Scheme for Confinement

I should like to conclude by outlining an
approximation scheme for hadron%g structure and con-
finement which I have proposed. The fact that
light hadrons are not far away fram the linear
Regge trajectories due to the confining forces sug-
gests to us that the prablems of hadron structure
and confinement should be treated together. As our
scheme makes use of the Schwinger-Dyson equation,

I shall refer to a study of these equations k3>%
Anishetty, Baker, Ball, Kim and Zachariasen.

As usual we begin with Q.C.D. without quarks.
Our approach is motivated by the vacuum instability,
i.e., the fact that the vacuum energy is lowered
by giving the color magnetic field a non-zero
vacuum-expectation value. This result was_first
noticed, as far as I am aware, by Saviddy37 and
Wilczek38 and was studied in more detail by Nielsen
and Olesen.39

A non-zero value of <Z> violates Iorentz
invariance. We should like to suggest that the
vacuum instability implies, not that the zero-
frequency camponent is non-zero, but that the ampli-
tudes of the low-frequency camponents are enhanced.
Such a feature is closely linked to confinement.

We wish to keep as close to the Nielsen-Olesen
calculation as possible in order to dbtain a man-
ageable approximation. They consider diagrams such
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Gluon
( Field
W
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FIG. 8. Diagrams for the gluon propagation.

[Bare Propagator
i

as Fig. 8(a). We replace the static field by a
virtual field and, if we neglect non-planar diagrams,
we Obtain the diagrams of Fig. 8(b). In other words,
we have to solve the non-linear integral equation of
Fig. 8(c). Faddeev-Popov ghosts may be included in
the dbvious way.

We are thus motivated towards a particular
truncated form of the Schwinger-Dyson equations for
the gluon propagator. We have solved the equation
to about 5% accuracy using a desk computer; we found
th'ixt a solution exists and that it behaves like
(p )~2 at low momentum. This is the behavior which
naive power counting associates with confinement.
The 5% error in our calculations could possibly have
misled us, but we believe that to be unlikely. It
appears to us that the Baker-Ball-Zachariasen 2 -2
equations do not have a solution with a pure (p°)
behavior, but we should not like to assert this fact
too stnongly.

A (p ) =2 singularity in momentum space corres-
ponds to a In x behavior at large distances in
coordinate space. With such a behavior, the first
term in the Wilson integral

7ot radey < v (Aol (9)

is proportional to the area and independent of the
shape, in agreement with the conventional wisdom
about confinement.

In any approximation scheme in any field theory,

one has to make an assumption about the n-point Green's

functions. The usual assumption that they are given
by the sum of disconnected diagrams is not applicable
in a confined theory where clustering does not hold.
Instead we assume that the shape~independence of the
area-dependent term in (9), which resulted from our
calculations, was not a coincidence and that it is
true for the Wilson loop as a whole. Such an assump-
tion, together with the use of disconnected diagrams
for the non-leading terms at large distance, enables
us to calculate the Wilson-loop integral from the
gluon propagator; the Wilson-loop integral is all
that is required for color-singlet quark calculations.
The assumption of shape-independence implies a form
exp {-const. A} for large Wilson loops, as may be
seen by considering a loop consisting of two other
well-separated loops.

The Wilson-loop formula exp {-const. A} tells
us that, for large separations, we may replace our
non-Abelian gluons by Abelian gluons whose propagator
behaves like 1In |x| at infinity. Crossed and un-
crossed diagrams must be included; the crossed
diagrams replace diagrams with interacting non-
Mpelian gluons. Neglect of crossed diagrams in the
confinement region is campletely inadequate; such
diagrams dominate the higher terms in the expansion
of the Wilson integral for large loops. Summation
of diagrams with crossed and uncrossed gluon lines
appears to be a formidable problem. However, it is
possible to approximate the area of the loop by a
kind of "non-covariant area," and thereby to replace
the co-variant gluon propagator by a static potential
proportional to the distance. Corrections to this
approximation probably involve the higher modes of
the dual string, the static force just mentioned
corresponding to the zero mode.

Tt is now a straightforward matter to treat the
equations for the quark propagator and the QQ bound
state. Since, at large distances, we have a static
linear potential, it is not surprising that we cbtain
trajectgries which rise linearly at large £ and
E(R « E2) . We take such trajectories to imply con-
finement.

-518-



Our equations contain the possibility of chiral
symmetry breaking, along the lines indicated by pre-
vious workers.40/41/42 "We then cbtain a zero-mass
pseudo-scalar QO bound state, If closed quark loops
are included the n acquires a mass. In agreement
with Witten's work, such a mass appears without ex-
plicit introduction of instantons, and it is propor-
tional to N-L.

Research supported by the National Science
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