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ABSTRACT

We describe here the relations between various design parameters, costs,

resolutions, geometry, etc., that we have found useful in thinking about charged

and neutral particle detectors for SPEAR and PEP. A great many alternatives

exist for the various components of these detectors: solenoid vs. Helmholtz

coils for the magnet, normal versus superconducting magnets, active convertors

versus passive convertors for the gammas, different gamma detection methods,

different return yoke configurations, etc. We have thought most about a system

based upon a solenoid magnet with drift chambers inside for charged particle

detection and lead glass outside for gamma detection. Consequently most of

the formulae and figures in this paper are oriented toward that configuration.

A great many other configuratons have been discussed as possibilities for PEP

detectors. Since the constraints ($, manpower, electrical power) and the

physics of interest at PEP are still unknown we consider the present con-

figuration to be only one of many possibilities. Each of the possible con-

figurations needs to be carefully studied to understand its limitations and

to optimize the design within those limitations. In that spirit we present

here some of the tools needed for understanding the design of a solenoidal

detector.
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We consider various aspects of the detector in the following sections.

1. Solid Angle p 2

2. Solenoid Thickness P 3

3. Magnet Design p 4

4. Charged Particle Resolution P 9

5. Charged Particle Discrimination P 11

6. Neutrals Resolution P 21

7. Cost of Neutrals Detector p 26

1. SOLID ANGLE

The low event rate and the difficulties of understanding many particle

final states have convinced most of us that we need a large solid angle

detector. To define some notation and get a feel for solid angles we calculate

the solid angle subtended by a cylinder of length L and radius R. The aspect

ratio a is L/R. The solid angle is plotted as a function of a in Fig. 1.

o
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Fig. 1.
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2. Solenoid Thickness

Gammas converting in the magnet coil will suffer an unknown energy loss.

Thus the coil should have a small number of radiation lengths to convert as

few gammas as possible and should have a small dE/dx to reduce the loss from

those gammas which do convert. The optimum material is Aluminum. It has

low resistivity (3.5 x 10-8 ohm-meter), a long radiation length (9.0 cm),

a low dE/dx (4.3 MeV/em), is inexpensive, and is easily worked. Although

copper has a factor of 1.6 less resistivity, its radiation length is only

1.45 cm and it dE/dx is 12.9 MeV/em. The fraction of gammas converting in

a thickness x is given by 1.1 - e-x/X(E) , where X(E) is the conversion length

for a gamma of energy E. Fig. 2 shows the number of gammas converting versus

thickness of aluminum for various energy gammas.

1

The fraction of gammas converting in a thickness x is given by

-x/X(E)- e , where X(E) is the conversion length for a gamma of energy E.

The energy loss in the coil for gammas that do convert can be easily

calculated for a small coil thickness (2 X
O

) by assuming that one pair is

formed. The ionization loss of the pair if it begins at the beginning of

the coil will be 2(x) (dE/dx). Assuming the pairs originate uniformly

throughout the thickness we get a mean energy loss of (x)(dE/dx) and the

rms spread is 2(x)(dE/dx)/ J12. The fractional rms energy loss for various

energy converting gammas is plotted versus aluminum thickness in Fig. 3.

Also shown are curves for the resolution of lead glass and NaI. For example,

if we are interested in measuring 100 MeV gammas with lead glass the coil

thickness should be less than 0.7 radiation lengths in order not to seriously

degrade the resolution of the lead glass. If we are using the NaI the coil

thickness should be less than 0.1 radiation lengths. We emphasize again that

this degradation only takes place for the fraction that convert. In practice

191



PEP-153-4

one must take into accou~t that gammas traverse the coil at a variety of

angles and that cooling water .(radiation length = 36 em) must be added to

the coil.

3. Magnet Design

Since the power available for the maget is a strong constraint on any

design we list here some related equations to give a feeling for the dependence

on various parameters.

P = power (watts)

~ = 4n x 10-7 meter- tesla/amp
o

B = field at center of solenoid (tesla) (1 tesla = 10 kilogauss)

h = conductor thickness (m)

w = conductor width (m)

R = radius of solenoid (m)

L = length of solenoid (m)

n = turns/meter

I = current (amps)

(ohm-meter) 8SoC
(ohm-meter) at

p(Cu) =
p (AI)

p = resistivity (ohm-meter)

R

current density (amps/m
2

) = ~Bfh
o

f2 112 In (1 + h/R)
o

B = llo I n f

B
2

2npL
P

B 2npL
V (volts) = ~ f w In: (1 + h/R)

o
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The factor f depends on how the solenoid ends are treated. For an infinitely

long solenoid or one which has iron return yokes closing the ends f ~ l~O.

For a return yoke which does not close the ends (as shown) f ~ 0.97. For a

solenoid without return yokes f = (1 + ( 2R )2)-1/2.
L

For a field of 0.5 tes1a in an aluminum coil 3 em thick, 0.5 m radius,

2and 2.0 m long (f=1.0) we need 0.96 Megawatts and 1330 amps/em.

If no end caps are required for the return yoke (the field.remains

uniform to ± 5% in the central region) then the return yoke need only subtend

a small solid angle. The thickness of the iron at the radius R is given by

BR
t = ZB ' where B is the field in the iron (typically 1.4 to 1.6). The fraction

y y

of the solid angle subtended by such a return yoke is (cos 9l-cos 9Z) where

tan 91 = ZR/L and tan 92 = ZR/(L+Zt). For a field of 0.5 tesla, By 1.5,

L=Z.O and R =.• 5 the return yoke thickness is 8.3 cm and it subtends 1.3% of
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Since the momentum resolution is poor in the end region with a solenoidal

field we could add to each end of the main detector end cap detectors:conststing

of toroidal magnets, drift chambers, and gamna detectors. We calculate here

the power needed for a simple toroidal magnet. The length, radii, and con-

ductor thicknesses are defined in the figure below.

Using the same units as on the previous page we have

~o I ~ I
Let B

0 - the field at r = (R1 + RZ)/ZB Z 1T r 'IT (R
l + RZ)

(R
I

2 -z
[:3in (RZ/Ri )_ Pz L PI L

+ t-i~
Z'n + R

Z
) B

p + +Z 2
~o t) 2RZt

2
-t 2R

l
t

1Z

The thickness t) should be chosen thin enough so as not to degrade the

energy resolution of gammas. For example choose t
3

= 1.5 cm of aluminum and

let R
l

= 0.1, RZ = 0.5 and L=l.O. The inner and outer cylinders can be made

of copper and we can choose t z =- 5 cm, and t
1

= 4 cm. With a Bof .15 tes1a

each magnet will require 0.17 Megawatts.
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4. Charged Particle Momentum Resolution

The uncertainty in the momentum measurement in the drift chambers comes

from the uncertainty in the track positions in the chambers Fn~ the multiple

coulomb scattering in the chambers.

Define !1.x position measurement uncertainty (m) (for drift chambers .0001)

B = field (tesla)

p momentum (GeV/c)

S radial distance between first and last chamber (m)

x/x = radiation lengths of material in chamber
o

G angle of the track from the beam

Assuming scattering measurement error in the central chamber alone the

momentum resolution is

=
I

SB

(!1.x) P

S

sin G) 2 +( 0.1 _ [I)2 l
S r;.·in9~ Xo _

1/2

The first term comes from the measurement uncertainty and is proportional to

the momentum and the second term comes from the multiple coulomb scattering

and dominates at low momentum. We have assumed perfect knowledge of the

angle e. (If e is measured by a measurement on z (to ~ 0 z) at a radius

R, then oz case sine/R must be added in quadrature to the above 0 pIp. For

a oz = ± I cm this generally makes a negligible contribution to the error.)

o 0Figure 4 shows the resolution versus p for 45 and 90. Curves are shown

for S = 25 cm and S = 75 cm. These would correspond to magnets of .5 and

1.0 meters radius since room must be left for beam pipe and supports and

framing for chambers. We've assumed a field of .5 tesla, ~x = .0001, and
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.0066 radiation lengths of material. Also plotted is the contribution of

the measurement error alone showing the importance of including the multiple

coulomb scattering. Fig. 5 shows the variation with e for 0.2 and 1.0 GeV/c.

The above formula is of course only an approximation to a complete

treatment which must take into account the multiple measurements of the

track and the scattering from the distributed material.
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Fig. 4.

. ,
' ..

1891

10.
. ,

p(GIWc:)

/ !
+---'-+--+---'i-++-I-++H--Hf----j---9'~_++t_+_H--l-I--'f--'-+---+-+-+-+-+--+-+-I-++-1

'~ ,_.1"... ,. ,__
.01,,-1-,--'-'--+--'-+-~---1'>----!6-+7 -!:'~9!-,f-I-

~I W

XBL 7410-1951

RESOLUTION ••. B FOR CYLINDRICAL CHAMBERS

Fig. 5.

XBL 7.10-1952

198



PEP-153-11

5. Particle Identification

This section deals with methods of distinguishing charged pions, kaons

and protons.

Introduction

For many purposes at PEP, SPEAR and other accelerators it is important

to distinguish the particle type as well as measuring its momentum. Here we

will assume the momentum has been determined with complete precision and discuss

the power of different techniques to identify particles. Among five major ways

to identifying particles; time of flight, ionization loss, Cerenkov light,

range, and decay characteristics, we will only discuss the first three. The

last two have been considered briefly, but were not felt to be generally useful

for the particle momenta considered. The three methods discussed are each

techniques for measuring the particle velocity, hence with its momentum,

finding its mass. Since these techniques can form independent measurements of

S( or m), their use in combination could prove more powerful than anyone type

alone.

Time of Flight

The difference in time of flight between n's and K's or p's is given by

llt
=

where d is the measurement distance

or

dllt =

F · 6 h llt ( /) I d f19ure. s ows ~ ns m p otte against the momentum or n-K and n-p mass

differences.

resolution.

+In a highly tuned system Qne might hope to achieve - .25 ns

Requiring a two standard deviation effect with this resolution
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in a flight path of 0.5 meters one could separate n's from K's up to about

550 MeV/c and n's from p's up to about 1.0 GeV/c.

Ionization Loss

One can describe the ionization loss approximately by

dE
dx

DZ= -2
A6

(see p 66 of Apr 74 Particle Properties Booklet)

or for plastic scintillator

dE
dx

2

[ 20. + In ( 6 2 ) - 26
2

] MeV - em2
/ g •

1-6

Figure 7 shows the fractional difference between n-K and n-p ionization losses

as a function of momentum. While the number of photons produced by ionization

loss in scintillator is large, the Landau fluctuations limit the resolution of

any measurement of ionization loss. It is probably difficult to achieve an

energy loss resolution much better than ~ .1 due to these fluctuations. With

a two standard deviation effect and a resolution of ~ .2 in ~ we could separate

n's from K's to 600 MeV/c and n's from p's to about 1.1 GeV.

Cerenkov Light

The spectrum of Cerenkov light is given by

N(A) = 2na [1-
l \

where n is the index of refraction.

By integrating this spectrum times the quantum efficiency of a phototube

one can write

Uphotoelectrons/cm of pathlength = No(l - ;~)

The integration for a bialkali PMT (RCA 8575) yields No = 210.
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Actual measurements of this parameter (Duteil et al 1968 CERN Rep. 68/14)

give a more conservative value of N ~ 100. For any actual system collection
o

and transmission losses must be considered. Two general types of Cerenkov

counters are considered: high index of refraction where pulse height analysis

has some value, and low index of refraction where the device acts primarily

as a threshold counter.

A. High Index

For indices in the range 1.3 - 1.7 a variety of transparent materials

exist. With this high index, a large number of photons are produced and some

pulse height analysis can be done. The fractional difference in photon yield

can be written as
C - C

1T K,p
C

1T

or

~ =

2 2
m - m

k,p 1T

2
- m1T

This fractional difference is plotted versus momentum in Fig. 8 for n = 1.3,

1.5 and 1.7 for 1T-K and 1T-p differences. Note the maximum difference (~=l)

is at threshold. A well designed counter might have a sensitivity of about

± 0.15 for a few cm thickness. Recall lead glass can achieve ± .05 or less

for long Cerenkov path lengths.

B. Low Index

Gases are the most likely materials in this range, although liquid

hydrogen appears possible for some applications. For low indices the photon

yield is low, so long path lengths are required and pulse height discrimination
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is poor. For low index materials, a useful approximation is

N ~ N [2(n-l) - ( ~ )~e 0

To facilitate the design of such detectors, the photoelectron yield using

N :: 100 (for 100% light collection onto a PMT) is plotted as a function of
0

n-1 and momentum. Fig's 9, 10, and 11 show curves of constant photoelectrons

for TI'S K's and p's. Note the curve labeled 0 is just the threshold for

Cerenkov light. For a real counter the light coll~ction efficiency must be

estimated to find the number of photoelectrons seen and thus to estimate

the counter efficiency and resolving power'! Fig. 12 ;L,ndicates the refractive

index of some useful gases as a function of pressure at typical room tempera-

tures. (Hayes et aI, ANL-69l6, Handbook of Chem. & Phys.)
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Results

The resolving powers of the various identification schemes are shown

in Fig. 13. The solid lines indicate reasonable possibilities, (assuming

a carefully calibrated detector) the dashed portions more speculative regions.

~tTOF: 20 values of --d < 1 ns/m. are probably difficult to achieve even with

large systems because of the large dimensions of the scintillator

needed in 4n type geometry.

Ionization: 20 values of ~ of .2 are probably achievable by careful calibration

Cerenkov: 20 values of 6 of .3 appear attainable
n=1.5

Cerenkov: This requires approximately 27 atmospheres pressure and with
n=1.03

10 cm path length yields about 60 phot0electrons x(geometrical

efficiency). If some pulse height discrimination is possible

the momentum region might be extended into the dashed regions

Cerenkov: This requires about 17 atmospheres pressure and with 20 cm
n=1.015

path length yields about 60 photoelectrons x(geometrical

efficiency). If some pulse height discrimination is possible

the momentum region might be extended into the dashed regions.

In conclusion, it appears possible to achieve good particle separation

up to 2 to 4 GeV for K's and p's respectively using carefully designed and

calibrated apparatus. These detectors have minimal bulk and could possibly

be included in a compact neutral plus charged detector.
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6. Resolution of a Neutral Particle Detector

This section limits itself to the discussion of y ray detection and its

implications.

Motivation

In reactions where many particles occur in the final state, and some of

them are nO, n's or other particles decaying into y rays, proper pairing of

the y rays is necessary in order to study in any detail the dynamics of the

decaying particles. A powerful technique for identifying the correct pairing

of y rays is to calculate the candiate pairs invariant mass and compare this

against the masses of known particles (TID, n, etc). Presumably the achieved

mass resolution is a good measure of the quality of a neutral particle detector.

Using this mass resolution as a figure of merit, we discuss the implications

of various y detection systems.

Kinematics

For simplicity only the decay of particles into 2 y rays is analyzed

here. Defining the decaying particle and final y rays as particles 0, 1,

and 2 respectively, we can write the kinematic equation

2
m = 2E E (I-CaSe )

o 1 2 yy

Where e is the angle between the 2 y rays
yy

Using this one can easily obtain

2
(-8m)

o
2

m
o

26m
o

m
o ~

. e }2sln-yy
(l-caSeyy
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rewriting e in terms of El
and E

Z one obtainsyy

rC1;2 -1 1

z z
( oE2)21 l/Z

om 1 o e ( OE1 1
Z yy + -- + E

Z
Jm El

0

For a given Eo' a range of values of E
l

or E
2

are possible, subject to

Eo = El + EZ• For a spinless particle 0, the y energies are distributed

uniformly in a with

aE
o

(l-a)E
o

with a . =mln

E -Po 0

2E o
, a =

IIIax

Using this, it is straight forward to average over possible a's (with a

computer), and in fact the mass resolution is almost independent of a. Now

we must make some models of the errors and study the consequences.

Errors

The assumed energy resolution was put in the form

oE = S E-n
E in GeVE

with 3 cases considered

8 = 0.05\
£ Lead Glass

n = 0.5')

8 o.o~] NaI
n = 0.25

r
0)8 0 l6E
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The spatial resolution was estimated for various cases:

(1) 2 sets of 2xo active converters followed by proportional chambers to.

measure the shower positiop. A Monte Carlo shower program gave position

resolution for this geometry consistent with the formula

~x = 0.18 E -0.65
y

(2) The same as (1) above, but the spatial resolution was limited to 0.5 em

(by the proportional chambers).

(3) Constant spatial resolution as one might find in a simple hodoscope of

Lead Glass blocks with

~x 3.0 em.

(4) ~x = 0.0

The error in e is
YV

where ~x is the one-dimensional position uncertainty and R is the radius of

measurement.

Constant angular error for each y(5)

so 118 =yf2 118
yy Y

118 = cy

Results

Representative combinations of the above error models were used to make

mass resolution calculations as a function of nO momentum (averaging over

allowed a). Fig. 14 shows the mass resolution for Pb-Glass and NaI with perfect

spatial resolution. Also shown are curves of perfect energy resolution and

constant angular resolution (for each y). From these curves the resolution of

a real system can be constructed by adding the appropriate pair of curves in

quadrature. In Fig. 15, mass resolutions are calculated for a real geometry

(R=60 em) and various assumptions.
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Lead Glass

(a) t::.8 = 0

(b) t::.8 defined by (1)

(c) t::.8 defined by (2)

(d) t::.8 defined by (3)

NAI

(a) t::.8 == 0

(b) t::.8 defined by (1)

t::.E == 0, t::.8 defined by (1)

One should perhaps keep in mind that for high momentum 'IT°·s the opening

angle is sufficiently small that pairing confusion is reduced consequently

the reduced high momentum mass resolution achieved in some cases considered

is not as damaging as one might first imagine.

'ITO opening angle probability distributions are shown in Fig. 16

-1= 2 cos S 0
1T

p(e ~ u)
yy = "sin2u/2 - 1/y2

S sin u/2
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7. Cost of the Neutrals Detector

The high cost of lead-glass and Nal make the neutrals detector a strong

contraint on any design. We perform a simple exercise here and calculate the

volume of lead glass needed to cover a cylinder with a layer 12 radiation

lengths thick. The volume of course is only the beginning of a real detector.

The number of pieces~ their shapes~ and the surface treatment have significant

effects on the cost. The sketch below shows the geometry of the lead glass

"blanket." ·The blanket is padded so all gammas see the same number of radiation

lengths.

I--~--J
Figure 17 shows the integrated volume of this blanket versus cylinder radius

for various aspect ratios (L/R). To a good approximation the volume is pro-

portional to the number of radiation lengths and the solid angle covered.

Since lead glass costs about $100,000 1m3 a cylinder 0.5 m in radius and

2.0 m long would cost $360,000 to cover except for the fact that many pieces

with odd angles would be required to achieve this geometry. This would

increase the cost by a factor of 1.5 or more. Using rectangular blocks would

require more volume but would save on cutting and polishing costs.
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Hybrid Gamma detectors.

Is it possible to use two detection techniques to improve the energy

resoltuion of low energy gammas? For example, can we use Nal (good but

expensive) to get good energy resoltuion on low energy gammas followed by

lead-glass (poorer resolution but not as expensive) to get the higher energy

gammas?

For this to be feasible we cannot have too large a fraction of the low

energy showers extend into the lead glass. Let E be the energy of the gamma

(GeV), RI(E) and R
2

(E) be the resolutions of the detectors (~E/E), t the

thickness of detector #1, and f(t,E) be the fraction of the shower that

escapes the first detector and is measured in #2. The final resolution will be

R
oE [ (1_f)2 2

( (J-f)E ) + f2 R
2

(fE)]
1/2

= R1E 2

If we take the case of Nal and lead-glass,

R = .009/ E· 25
R = .05/£·5

I 2

Fi.gure 18 shows R as a function of f for various energy gammas. When f=l on

the right hand side the resolution is that of all lead-glass; when f=O on the

left the resolution is for pure Nal. A shower monte carlo program has been

used to calculate the fraction of a shower escaping 2, 4, 6, and 8 radiation

lengths of Nal and these give rise to the vertical curves. For a 50 MeV

gamma to the resolution goes from 22% for pure lead glass to 10% with the

first 6 radiation lengths being replaced by Nal. For a small detector this

might be feasible. For large solid angle detectors at SPEAR and PEP this

becomes fairly expensiv~. Since the cost of Nal is about 5 times the cost

of lead-glass, using 6 radiation lengths of NaT would triple the cost of a

12 radiation length detector.
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