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Denoting now by p and q (Fig. I) respectively
the distances from the entrance and the exit of the
system of the two points between which a phase
advance of 2TI is wanted, we must have (2)

we have

AD - BC AD (7)

and the total transfer matrix (4) becomes

-II
2BD + LD 2

IIM (8)
t

0

I. Introduction

Meads has suggested (I) the use of a symmetric
insertion for obtaining a phase advance of 2TI in
one plane and a phase advance of TI in the perpendi­
cular plane.

The purpose of this paper is to write down
some analytic relations for this device.

2. The Device

~onsider (Fig. 1) two quadrupole multiplets
M and M and a field-free drift length L lying
between them. If we assume that M and M are symme­
tric with respect to each other, their matrices are

p + q + 2BD + LD 2 o (9)

On account of the relation A = D
t

the device is
self-symmetric. t

We want a phase advance of 2TI (identity or
reproduction matrix) in the x-plane and a phase
advance of TI (turn-over or minus one matrix) in
the y-plane. In either case afocality of the whole
system is a first requirement (2) which we write,
from Eq (4),

M II : : II
(I)

and

M= II : : II
(2)

Let the beam direction be from M to M. The total
transfer matrix of the device is then

Mt =11
At B

II = M x II ~ : II
t x M (3)

C D
t t

i.e.

=11

AD + BC + LCD 2BD + LD2

LCD II
M

+ LC 2
(4)

t 2AC AD + BC +

and in order to achieve a phase advance of TI
between the two abscissas described by p and q we
must have (2)

(13)

(14)

(12)

(11 )

(10)

II

o

- 2 Q.
C

- I

2A + LC

D(2B + LD) < 0

This is the situation in the x-plane.
b) If we take

This is the situation in the y-plane.
We now introduce indices x and y for the two

planes and write the conditions for achieving at
the same time a phase advance of 2TI in the x-plane
and a phase advance of TI in the y-plane.

p + q + 2 D
0C

with

Q.< 0
C

in Eq (5), the total transfer matrix (4) becomes

and

(5)oC(2A + LC)

There are two possibilities to satisfy thi~ condi­
tion

a) If we take

3. Conditions for Achieving Simultaneously
Reproduction in the x-plane and Turn-over

in the y-plane

rendering thus afocal the basic multiplets M and M,
C = 0 (6) From the preceding theory we conclude that in

order to achieve at the same time a phase advance
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of 2n in the x-plane and of TI in the y-plane, we
must have

(28)

(29)

(30)

e 0
x

A D 2Ax x
L P + q - B --:i...

x e
y

4. Self-Symmetric Multiplets

If the two multiplets used in the structure
are self-symmetric we have A = 0 and A = D sox x y y
that the two mirror multiplets are identical. Eq
(23) can then be satisfied only if we have either
A = 0 = 1 or if we have A = D - 1. In the

x x x x
first case Eqs (19)-(22) reduce to

the sign of Bx '

Let us recall that the matrix elements we are
using here are those of the entrance multiplet ;
those of exit multiplet are obtained by interchan­
ging A and D. Physically, the fact that A and D
should be of the same sign in either plane results
from the overall symmetry of the structure.

The preceding relations are quite general in
the sense that they apply to any mirror-symmetric
structure. We now investigate in more detail a few
specific structures.

(15)

(16)

(17)

(18)

o

o
20
-L
e

y

e
x

+ Le
y

+ LD
2
x

e 0 (19)
x

0 o (B e - A 0 ) (20)
Y x x Y Y x

2A
L - ---:i... (21)e

y

20
P + q - --:i... (22)e

y

and the inequality

2A
Y

-(p+q) = 2B
x
D

x

e D < 0
Y Y

must be satisfied. According to the circumstances
the sum p+q appearing in these equations will be
a given quantity or an unknown parameter.

We can write the four equations (15)-(17) in
the form

In the second case Eqs (19)-(22) becomeEquations (19) and (20) may be called "inter­
nal" relations because they represent the constraints
imposed ~n the multiplet M (or its symmetric coun­
terpart M). Equations (21) and (22) may be called
"external" because they determine the drift length
between the multiplets M and Mand the positions
between which the 2TI - TI transfer is achieved.

On account of the relation

e 0
x

A D - 1
2Ax x

L P + q B _ ---:i...
x e

y

(31 )

(32)

(33)

which follows from Eq (7), we can also write Eq (20)
in the more symmetric form

(25)

conclude that A and 0
opposite to -'y------~y

A 0
x x

A D + A '0
x y y x

Eqs (21) shows that A
same sign so that y

A e < 0y y

From Eqs (18) and (25) we
must be of the same sign,
the sign of e .

y
Eq. (17) shows that B

the same sign so that x

B 0 < 0
x x

B e
x y

and e
y

and D
x

(23)

(24)

cannot be of the

cannot be of

(26)

Eqs (28)-(30) represent the solution of the problem
for Bx < 0 while Eqs (31) - (33) should be taken for

B
x

> O. Although solutions can therefore be found,

at least in principle, they may not be very inte­
resting in practice, especially in the case where
one wants L as large as possible and p + q as
small as possible; with self-symmetric multiplets
one can only achieve L = P + q as the preceding
relations show. Eqs (19)-(22) point the way to more
practical solutions for the case considered : take
A Ie as large as possible and D Ie as small as

y y y y
possible. Physically this means that the multiplets
should display a pronounced degree of asymmetry
(in the reverse order when going from the first
to the second multiplet). How far can one go this
way ? The answer to this question is revealed by
considering the cases of degeneracy.

Moreover from Eq (23) we have

A 0 > 0
x x

(27)

From Eqs (26) and (27) we conclude that A and 0
must be of the same sign. opposite to ~x ~x~
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beyond this limit it is not possible to achieve a
2n phase advance. Comparison of Eqs (21) and (34)
yields for this limiting case

5. Cases of Degeneracy

Eq (10) shows that there is a limit for the
drift length, given by

2B
L

x (34)
max Dx

6. Use of Simple Multiplets

Eq (22) yields then for the maximum value of p + q

(40)- 2B D
x x(p + q)max

That this is indeed a maximum can easily be seen
by using Eq (17). We notice the symmetry played in
the theory by the quantity L on one hand and the
quantity p + q on the other. We also note that it
is not possible to achieve a phase advance of 2n
if the points between which one wants this phase
shift are farther apart than the positions given
by Eq (40).

(35)B C
x Y

A D
Y x

It is easy to show that a structure composed
of mirror doublets cannot be used to achieve a
2n - n phase advance. Indeed, if one takes the
focusing-defocusing plane of the entrance doublet
as the x - plane, one has B

x
> 0, D

x
> 0 so that

Bx and Dx cannot be of opposite signs ; if one

takes the defocusing-focusing plane of the entran­
ce doublet as the x-plane, one has Ax > 0, B

x
> 0

s~ that, again, Ax and B
x

cannot be of opposite
s1-gns.

In the case of mirror triplets solutions
can be found but a more detailed investigation shows
that a large number of unphysical cases have to be
eliminated.

(37)

(36)

o

o

D
Y

A D
x Y

Now A cannot be zero [on account of Eq (23),
this ~ould require an infinite value for D ],
consequently we can satisfy Eq (36) only b9 putting

so that Eq (24) becomes

This case of degeneracy corresponds therefore to
the maximum value of L given by Eq (34) and to the
minimum value of p + q for which we find from Eq (22)
(p + q) . = O. Practically, housing of the coils
and othWfnproblems may prevent the rigourous achie­
vement of this situation.

Another, probably less interesting case of
degeneracy, is represented by

A 0 (38)
y

In this case we have from Eq (21) L o and from
Eq (20)

D
J.. B D (39)
C x x

y
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