
STATISTICAL BEAM TRANSPORT

FOR

*HIGH INTENSITY ION CURRENTS

by

C. Robert Emigh

Los Alamos Scientific Laboratory
Los Alamos~ New Mexico

ABSTRACT

One of the problems associated with the operation of a high­
intensity 14-MeV neutron facility is that of transporting an ampere
beam ~f tritium ions from the ion source to a small target area
(1 cm). The intensity profile history of such an intense beam is
difficult to predict correctly as it depends upon detailed knowledge
of the nonlinearities in the system and a complete descriptiQn of
the individual particle trajectories~ neither of which is sufficiently
known.

This paper describes one way in which the beam characteristics
may be described in sufficient detail to design completely a transport
system to follow an intense beam through a nonrelativistic accelerator
structure. The statistical beam transport is a rms average description
in which the detailed charge distribution or particle velocity distribution
need not be known. The size and growth of the beam is related to the rms
values of both the positions and velocities of the individual particles.

I. INTRODUCTION

The limited success in using the Kapchinskij­

Vladimirskijl (K-V) equations for describing the

envelope of an assemblage of charged particles has

prompted a different approach. To characterize

properly the assemblage using the K-V equation is

often most difficult as the edge of the beam is quite

sensitive to the slightest change in the charge

distribution. For this reason, the K-V theory is

quite restrictive in that the particle distribution

is constrained to lie on an ellipsoidal surface

in the four-dimensional phase space x, i, y, y.

*Work performed under the auspices of the U.S.
Atomic Energy Commission.
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In the following presentation~ the beam is

characterized statistically by its rms position

and velocity. It thus becomes insensitive to

small changes of density distribution in phase

space and the description is valid for the practical

profiles usually observed. The need for a realistic

description was recognized many years ago and

came to the attention of the author early in

the spring of 1970. 2 ,3 Although this paper

presents the theory as applied to beam transport

in a low-energy pre-injector area4 (accelerating

column, beam transport) ~ it .can obviously be



extended to many areas of accelerator physics

(accelerating gaps, beam focusing, and experimental

area beam transport).

II . BEAM GEOMETRY

The various terms in this equation have special

meanings relating to the energy and forces involved

in the motion of the group of particles.

IV. INTERNAL FORCES - PULSE BEAM

The forces involved in determining the beam

characteristics are contained in the term

of Eq. (4). The forces can be classed into internal

forces due to the space charge distribution and

to external forces caused by accelerating electrodes

and focusing devices.

Considering only nonrelativistic velocities

the space charge internal forces are entirely

electrostatic. The reaction on each individual

particle is

The distribution of particles in the

ion beam is assumed to be symmetric in each

component direction and all the particles

in a particular group have a longitudinal velocity

very close to vz(z). That is, ij(z), yj(z),

and ~. ( z) < < v (z), where x., y., and z. are
J Z J J th J

the component positions of the j particle

with respect to the centroid, z, of the group

of particles under consideration. The initial

restriction that the particles be nonrelativistic

can be removed with some difficulty and will

be the subject of a later paper.

III. RMS EQUATION
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where Fx is the x-component of the space charge

force and mj is the mass of the jth particle.

For a given assemblage of particles, the poten­

tialat any point (xj ' Yj , Zj) due to the electro­

static field of all the rest of the particles

can be written

where nq is the charge on the individual particle

in coulombs, E is the capacitivity of vacuum in

Farads per cm, n is the charge state of the ion

and ~ is the potential in volts. All dimensions

are in em.

The force term, Eq. (5), can be written in

terms of the potential

(2)

(1 )

• 24x
j

(t).

24 x
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(t),

velocity is defined asand the rms value of the
N

v

Vx
2

(t) =; 2:
v j=l

The factor 4 is arbitrarily introduced so that

the rms radius of a uniform density beam will

match the real radius. N is the total number
v

of particles in the assemblage under consideration.

Similar equations exist for the y and z components.

Consider only the x-component, Eq. (1),

and perform two time derivatives . After the

first time derivative, the x-component becomes

The rms value of the position of all the

particles in a given assemblage at a given time

(t) [or place (z)] is defined as

N

~ !
v j=l

For simplification, the time dependence will

be implied and the summation will be over all

particles in the g~oup under consideration.

After the second time derivative, the x-component

equation becomes

Rx

R 2V 2 _ R 2 R 2
x x x x

R 3
x

4

NRv x
o (4)
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power series t

(10 )

The term (R 2 + R 2. + R 2)3/2 occurring
x y z

in the denominator of the force term represents

a coupling between the otherwise separate

dimensional equations.

It is far more difficult to derive the

rms force term for a d.c. beam as it is dependent

on the particle distribution both far upstream

and far downstream. However, some rather reasonable

approximations reduce the problem to a relatively

simple one. Consider a very narrow disk whose

thickness is dS, and whose volume contains

NL . dS particles. The total force on a particle

located within this disk at x
j

' Yj will be due

to the coulomb forces of all the other particles

in that disk plus those particles contained

in similar neighboring disks. In a manner similar

to that of calculating the force term for the

pulse beam, the force term, Eq. (5), can be

expressed as

V. INTERNAL FORCES - d.c. BEAM

(z _z.)2 - R
2TI

2j 1

(9 )

and further to make the second term zero over

the double-summation. The succeeding terms

then become negligible. In making the double­

summation, symmetry of particle distribution

must be invoked, then

R is introduced as a constant over the summations

and is chosen to justify an expansion into a

Here the free variable t at has been introduced to

simplify taking the indicated summations and all

particle masses, m
j

, are the same, M. Considering

only those parameters which are involved in the

double-summation and re-arranging the terms t

the bracketed expression becomes

*22:[1-
j i

(11)

Carrying out the indicated operations on the

free variable, a, in Eq. (8), the internal force

Lim a
a-+l ~

can be defined as the rms charge density for the

assemblage and that the total charge,

(16)2Rx
2 2

n q NL •

27fE:M

where NL is the number of particles per unit

length (cm-1) . It must be as sumed that all di sks ,

dS, will have the same particle distribution in

both x and y dimensions and that for every

upstream disk there is an identical downstream

disk -- that is, the beam distribution is

essentially symmetrical in z. This is usually

a good assumption as in most practical beam

transport the beam does not change appreciably

in a distance of the order of a few beam diameters.

CarrYing out the indicated operations, Eq. (15)

reduces to

(14)

3/2

. (l2)
( R 2 + R 2 + R 2)

x ¥ z
that the ratio

Q(z),

2 2
Nn q v

4'ITEM

can be a IUllction of t and/or z to account for

such variations in charge density distribution

due to beam neutralization, charge stripping,

or charge exchange. Beam losses due to collimation

can also be accounted for; however, a corresponding

step change in other parameters will have to be

applied.

It becomes quite clear

term becomes
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is constructed for reference.
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Phase plot of beam characteristics.
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so that the force term, Eq. (5), for external

linear forces can be represented by

n. K (z,t) • R 1M , K (z)x x x

A similar equation exists for the ydimension;

however, the z-dimension equation cancels to zero

over the S integration, as it should.

VI . EXTERNAL FORCES

The external forces involved in beam transport

are stationary in position but not necessarily

in time and are usually applied for the purpose

of focusing and accelerating beams. For the

most part, such forces are considered linear

(terms in x
j

2 will cancel out over the double

summation) ,

Other than linear forces, for example, those

applied by an accelerating column of Pierce design,

are special cases and easily handled by these

equations by appropriate modifications (see

Appendix) .

VII. EMITTANCE

The second term of Eq. (4) is the emittance

term of the beam transport. The rms approach

has brought to light a physical interpretation

of this term which has to do with the chaotic

An area, which is associated with each

particle, is defined by a perpendicular length ~

from the reference line and a width, dm, which is

the length of the reference line,(R 2 + R2)1/2,
x x

associated with the rms beam phase space, divided

by the number of particles N
v

. The length, ~, can

be obtained by comparing the similar triangles

designated by the angle e,

energy contained in the beam.

It is first desirable to establish that

the quantity

xXR R / (R 2 + R 2)
x x x x' (21)

R 2 V 2
x x

R 2 R2
x x

where X and X are the distances from the reference

line as indicated in the diagram. The area

associated with each particle dA, is then

Again, from the diagram

is related with an area in phase-space occupied

by the beam. Consider Fig. 1, which is an x­

dimensional phase plot of the individual particles

of the beam. The line

dA (xXR R )1/2 / N
x x v (22)

(20)
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Making these substitutions, the area is

..J

(28)
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A similar type of calculation can be made for the

first term. That is, it can be written

It is quite evident that for linear forces,

Xj = K . x j ' expression (27) reduces to zero,

both surviving terms being identical. Consider

further the effect on these two terms due to

internal space charge forces. From the preceding

sections, the second term is equal to

By expanding the various squares and summing

over both summations, the first term can be made

equal to zero if R is chosen so that

R 2 R2
x x

R 2 Y 2
x x

E 2
x

(24)

R
X

2 xJ..2 ] 1/2= 1 [R 2 ;. 2 _ 2x. i. R R +
N

v
x i J. J. X XdA

By differentiating dA with respect to time, one

can show that this expression for area is con­

served if the forces involved are linear, that is,

Xi can be represented by K • Xi everYWhere. As

dA and its reciprocal, the particle density in

phase space, is conserved, this representation is

a graphical confirmation of Liouville's Theorem.

The rms total area, A2 = 4N ! (dA)2,

defined as the rms emittance squared, is given by

This emittance term also can be shown to be con­

stant for linear forces and certain other forces

in the following manner. Expressing the

emittance in basic terms according to our

definitions,

(26)

[

a2y 2 aR .R R 2 R 2 R 2]
R2 = __x_ +~ + -2S.... + ...:L- + _Z_

4 2 2 2 2
Differentiating the emittance with respect to

time

R P.x xR 2
x

Carrying out the indicated operations on the free

variable, a, the first term becomes

16 [~
N 2

v j
2E Ex x

. ..
x x -

j j

Thus, the surviving two terms of Eq. (27) are

identical to a second order approximation and

opposite in sign. This rather remarkable result

indicates that the rms emittance is essentially

constant under space charge forces regardless of

the x, y, or z particle density profiles. The

only constraint placed upon the assemblage is

(27) that of symmetry in each component direction.

It is interesting to derive the rms emittance

from a different approach to appreciate its

physical significance. Consider a beam of zero

emittance, whose rms position is Rx and whose

rms velocity Yx is Rx ' and whose trajectories are
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equation reduces to

From the definitions of R 2 and V 2 the above
x x '

laminar (for example, the reference line in Fig. 1).

The added kinetic energy, K.E., needed to form a

beam of finite emittance having the same rms

values of Rx and Rx is given by

A similar equation exists for the y-dimension. In

these expressions, the independent variable is time,

t. However, custom has preferred the use of the

longitudinal direction, z, as the independent

variable. A transformation in variables can be

made by dividing the above equation by the

longitudinal velocity squared, v 2 = dz2 / dt2 •
z

This allows a recasting of several of the para-

meters into more commonly used ones. For the

steady current

• 2x. -
1.K.E. =2 :1 j

K.E. Rx
"

H (z) • R 2
x x

cj> (z)R 3 n
x

K (z) • R
x x

2cj>(z)

mass of ion particle, proton

particle in same units.

the rIDS dimensions in units of cm.

charge state of the ion.

(K is a constant and has the value

6.487 x 105 (VOlts)3/2/ampere.)

</>(z)

2 • 2
(1/2)M(V - R ) units of electron

x x
volts.

average longitudinal energy per

unit charge, units of· electron volts.

external force constant per unit

oharge in units of electron volts/
2cm

I(z) = beam current in units of amperes.

M,M
P

R ,Rx y
n

K (z)
x

where H (z)x

Because of the complexity of this expression,

it is best solved on a computer. The term

H (z) . R 2 is the rIDS emittance squared and is
x x

normally conserved during beam transport. How-

ever, its value can change should the beam be

subjected to collimation or heating as in the

transmission through a gas target, for example.

The beam current I(z) is normally conserved,

however its value can also change due to

collimation, stripping, charge exchange or to

beam neutralization from the residual gases in

the beam transport vacuum system. The average

longitudinal energy, <j>(z), is normally conserved

except in the accelerating column and in the

gas target.

°
2/2 R

x
(R 2 + R 2 + R 2) 3/2

x y z

Thus, the rms emittance is directly related to

the added kinetic energy associated with the

departure of the beam from ideal (straight­

line configuration in phase space). This K.E.

is related, at the extraction surface of a.
plasma, where Rx = 0, to an elevated beam

temperature, (l/2)kT. It should be noted that

the K.E. associated with an increase in emittance

from a rIDS laminar flow is not conserved but that

the quantity R 2(V 2 _ R2) is conserved for
x x x

linear forces and essentially conserved for space

charge forces. This is not too surprising as the

Rx ' Rx reference line is not a physically

meaningful quantity.

VIII. SUMMARY

The rms description of an intense beam of

ions can be expressed by the equation

for a single pulse of particles.

Of more pr~ctical concern for the 14-MeV

Neutron Facility, is the rIDS description for the

history of the beam cross section. From the

preceding sections, the equation is
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where the focusing strength per unit charge, Kx '

in electron volts/cm
2

is given by

As this development applies to an orthogonal system,

the above focusing force is for a sector-shaped

magnet. In a similar manner, the vertical focusing

strength K = O.
Y

In magnets which do not have entrance and exit

apertures normal to the beam, there is an additional

amount of rocusing. As this occurs in a very small

linear dimension of the order of the beam diameter

or less, a step change in convergence can be made.

Again using formulae given by Steffen and ignoring

second order effects due to the fringe fields, the

step change in the individual trajectories are

Application of this theory to the beam trans­

port problems of the 14-MeV neutron facility will be

the subject of subsequent reports.

IX. APPENDIX

A number of corrections can be made to the rms

equations to account for beam transport through

various types of focusing devices and accelerating

structures. In many cases, such fields are

constrained to a small linear region and their

effects can be accurately approximated by a step

function in one of the transport equation parameters

at the appropriate position. In other cases, the

fields may be such that the effect is uniform over

long distances and again a step function in one

or more of the parameters is appropriate.

Examples of these latter cases would be the

bending magnet and the accelerating column.

Kx
_ 2ep/p 2

m (40)

and
(41 )

or

where e is the angle of incidence of the beam and

is positive if the outermost trajectory in the

bending magnet is lengthened. The equations are

valid for both entrance and exit effects. Using

equation (3), the rms convergence step change can

be calculated

(_p
Z

) + oXj ' p sin (~)
m m Pm

Homogeneous Field Bending Magnet

In this type of magnet, the horizontal focusing

in the plane of the beam trajectory is continuously

applied over the entire effective length of the

bending magnet. 'J'hi.s focusing results from the

different path lengths of the various particles in

the beam. The effective focusing strength can be

easily calculated in the following manner.

The linear trajectory equation for the

horizontal transverse displacement, x j ' referenced

to the magnetic radius of curvature Pm is given

by Steffen,5

The individual particle acceleration can now be

substituted into the rms equation force term

equations(4) and (5), with the result

After taking two time derivatives of equation (37)

and eliminating the initial condition parameters,

oX
j

and oX
j
', the x-dimension acceleration becomes

These equations are valid as long as P »R,R.
m x y

If this criteria is not valid, higher order effects

can be included as well as a possible step change

in R and R. In the practical cases, a bending
x y

magnet can be accurately included in the rms

equations by the following step changes

(see TABLE I).

(42 )
- (R /p ) tan ex m

R r (R Ip ) tan e
y y m

R 'x

and similarly

• R 1M ,
x

n . K
x

4
NRv x
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TABLE I

RMS Transport Equation Step Functions
For A Homogeneous Field Sector Bending Magnet

Making this substitution into Eq. (18), tp.e free

constant becomes

R ' R ' K Kx y x y

Zin (entrance) -ttl/Pm) tan Sin (R/Pm) tan 8in

Z > Zin' Z < Zout -2,fp 2
m

Zout (exit) -(R/Pm) tan 8
0ut (R/Pm) tan 80ut

K = - ep"(z)/2x

and equation (43) becomes, for a circularly

symmetrical charged beam,

'Pierce' Accelerating Column

"<P (z.) • R
4

I 1
If epl/2(z)

Only one equation need be considered as the beam is

axially symmetric. The force constant, Kx ( z), can

be derived in the following manner. The potential

at the position x
j

' y., z. can be expressed in
J J

terms of the on-axis potential in the usual manner

(48)
4/3

Thus, 'When the emittance is zero and the potential

along the beam is given by Eq. (48), the particle

trajectories will effectively be parallel

en = R = 0). The electrode configuration neededx x
to insure such a potential distribution can be

6calculated.

When the emittance is not zero, the beam will

expand slightly as given by the second term. As

the beam expands, the last two terms become unequal

and an additional focusing takes place. By

considering only the first two terms and that R
x

is very nearly constant, the beam growth can be

estimated from

~re R = R = R. The solution to equation (47)
.....r:-- x y
is straight forward and gives the Child-Langmuir

space charge law.

1I

In the 'Pierce' column, the main objective is

to accelerate an ion beam from a plasma surface

into a near parallel flow. This has the effect of

stabilizing the plasma extraction surface into a

flat boundary and so minimizes the beam emittance.

The usual procedure for designing the column

electrodes is to solve equation (36) with the first

two terms equated to zero.

th. thand the force on the i part1cle at the j

position will be

or the acceleration on the i
th

particle will be

where 4> (z) is given by equation (48). Because a

singularity exists at z=O, the equation is best

solved in terms of the independent variable t,

in place of z. The solution gives

X.
J - ep"(z) • x

j
• n/2M (46 ) R (z) -R (0) +

x x

Usually, for practical examples, the beam growth

during the transient time, t, down an accelerating

column is less than one percent.
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Quadrupole Focusing Magnet

The quadrupole focusing magnet can be considered

as a field distribution which is illliform in the

z dimension and has an effective length, L, which

in the usual manner includes the effect of the

fringe fields. In the rms equations, the focusing

of the quadrupole magnet is accurately approx­

imated by a step function in K and K , whichx y
lasts over the effective length of the quadrupole.

From Eq. (17), the focusing strength is defined as

K (z)x
4M

nR 2
x

L
J

the impetus to finish the theory in a form usable

for the appropriate beam transport calculations.

In this latter project, the support and encouragement

of H. Motz and R. Perkins of P-Division are also

appreciated.
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"Which will use an ampere beam of tritium, provided

.90

A. Sessler, Berkeley: What approximations have you
made to get the last term, the self-force term, in
your derivation? I presume that it is not exact and
that some approximation has been made to put it in
that form.

Emigh: That is correct. You have to sum over all
the forces by all the particle distributions; the
details are presented in my paper. The term present­
ed is a first-order approximation. If you were to
make higher-order approximations, you would find
that the Rx in the numerator of this expression
would have additional terms in higher powers of Rx
giving the higher moments.




