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Abstract

A new package of programs, called GFUN, has
been developed for designing and calculating the
fields of two-dimensional and three-dimensional
magnets. The field due to the magnetisation of
the iron is calculated directly. "DRAW" sub
programs simplify the input of data for the iron
and current regions, and display a picture of
the iron and current elements for checking as
they are read in. "GETB" subprograms allow the
field at a point, along a I ine or over a region
to be typed, graphed or contoured. Automatic
optimisation is provided. GFUN results have been
checked against TRIM1calculations and against the
measured fields of existing magnets. GFUN is
being used for several magnets currently being
designed at the Rutherford Laboratory.

I. Introduction

Over the past two years we have developed at
the Rutherford Laboratory a magnet design package
called GFUN. We used three criteria in deciding
how to develop it.

1. It should be easy for the magnet designer
to use. Most of the work of data input should
be done by the computer. The input data should
be displayed for checking. Results should be
displayed in a way to make interpretation simpler.

2. I t should be interactive. Calculating inter-
actively saves the magnet designer time. His
train of thought is not broken as it is when he
must submit a job and wait minutes or days for the
results. His ideas or doubts can be checked
immediately. For example he can see from the
picture if he has set up the problem incorrectly
or awkwardly, or he can follow up anything inter
esting the graph of the field reveals. He can
stop when a I ine of thought proves unprofitable,
and he need not provide in advance for al I possi
bilities. For these reasons GFUN has been
designed as an interactive package. However on
line facilities are not always available, and
much of GFUN can be used in an off-l ine mode.

3. It should be available in both two-dimensional
and three-dimensional versions, which the user
operates with simi lar commands. This criterion
led to the choice of a direct calculation approach.
The difficulties of a general mesh generator in
three dimensions and the resulting enormous set
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of finite difference equations seemed a daunting
task. The finite element approach, which also
leads to a very large number of equations, was
more attractive from the data generator aspect,
but had not yet been developed sufficiently. The
fact that only the iron regions need to be divided
Into elements and produce equations to be solved
seemed a definite advantage of the direct method.
Our experience to date supports our choice.

Even in two dimensions, direct calculation of
magnetisation fields is more convenient for the
magnet designer than finite-difference or finite
element methods. With those methods, the boundary
value of the field or potential must be prescribed.
In practice the boundaries must be located far
from the magnet, and the field must be calculated
over this external region, which may be of no
interest to the designer. Even worse, the whole
system - conductor, iron and free space - must
be spanned by a mesh, which has to be as complex
as the most complex part of the system. With a
direct-calculation method, on the other hand,
only the iron region need be divided into elements.
There are far fewer elements; and, however complex
the current geometry, the mesh of iron elements
can take advantage of the simpl icity of the iron
geometry.

I I. Hardware and Software

GFUN is used with the IBM360/195 at the
Rutherford Laboratory. Although the central
computer has two megabytes of core storage, only
160 kilobytes are available for an on-l ine program,
and GFUN operates in that. Two peripherals are
used; a typewriter for input and output of text
and a Computek 400/15 Storage Tube Display for
output of pictures and text.

A satell ite computer (Honeywell DDP224)
handles messages between these peripherals and
the GFUN program in the central computer. Locally
written software in the 360/195 communicates with
routines in the supervisor program, which manages
all on-line input and output. The overall system
is known as DAEDALUS2. Further software packages 3 ,4
in GFUN prepare the graphical output and diagnose
errors in messages from the typewriter.

I I I. The Direct Calculation Method

Background

In contrast to the partial differential
equation method the integral equation or
direct-method has not been used extensively in
the solution of the magnetostatic problem. The
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pr&fudnary work of A HalacsyS at the University
of Nevada, V5A, in the dipole formulation is well
known and the series of computer programs RENO 1,
RENO 2 and RENO 3 apply the direct solution
method to the solution of the magnet problem.
A formulation in terms of vector potential for
an assembly of dipoles was described by
5 5ackett 60f LRL and a passing reference was
given to a program cal led TAMI based on the method.
Recently there has appeared several papers from a
group at Toronto University, Canada, giving
detailed analysis of the different formulations
of the integral equation method. Notably Zaky 7
and Robertson S who described several mathematical
models and gave results for some 1inear problems.

Our approach has followed similar lines
in as much as we have used the magnetic field
intensity vector fo-rmulation but our method of
discretisation is to replace the iron regions
by a number of arbitrarily shaped elements and
to treat the magnetisation as constant through
out each element.

x
How it Works

(b) Take the gradient of Eq (3); and

The field Hm can be written in terms of the
scalar potential:

(c) Integrate over z to make the equation
two-d imens iona 1,

M XH

so that

H H + C Xa
H + Cab Xb Hbca aa a

H = H
cb

+ Cba Xa H + Cbb Xb Hbb a

which can be rearranged to read

(Caa Xa -1) H + Cab Xb Hb - Ha ca
(6)

Cba Xa
H + (C bb Xb -l) Hb Hcba

H H + C M + Cab Mba ca aa a
(5)

Hb
Hcb + Cba M + Cbb Mba

But the magnetisation M can be expressed in terms
of the magnetic susceptibil ity X

Each of the equations in Eq (4) through Eq (6) is
a two-component vector equation; each C is a two
by two tensor.

If we knew the susceptibilities Xa and Xb'
Eq (6) would be four simultaneous linear equations
which could be solved immediately for Ha and Hb·
Instead we must choose initial values for the

Fig. 1. Geometry of the simply example used to
describe the direct method.

For simplicity, let us consider the case in
which there are only one current element and two
iron elements, as shown in Fig. 1. From Eq (1)
and (4), the field at the centre of each element
is given by

( 1)

(2)

H = H + Hc m

with the scalar potential written as a volume
integral of the magnetisation over the iron region.
In 51 units,

If we: (a) Divide the iron region into N elements
and treat the magnetisation as constant
over each;

v = 1 f~ dV
m 1+1T r 3

In the usual magnet design situation, in
which the currents are specified, the field Hc
can be calculated at any point by integrating
over the volume of the conductors. In two dimen
sions, the calculation is analytic and in GFUN is
carried out using the techniques described by
Beth. 9

we obtain the following equation for the field at
the centre of element k due to the magnetisation
of all the elements:

In GFUN Hc ' the field due to the currents and
Hm the field due to the magnetisation of the iron,
are each found directly and added to give the
total field:
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susceptibil ities, solve for the fields at the
centres of the elements, find the values of suscep
tibil ities corresponding to these fields from the
table of known values for the material, and repeat.
Depending upon the saturation of the iron, and the
number of elements, convergence to a few gauss out
of several kilogauss requires twenty to one-hundred
iterations.

Then the magnetisation can be determined from
the converged values of H and can be stored. There
after the field at any point can be found from the
stored magnetisation and the appropriate computed
C coe ff i ci en t.

If the magnet being calculated has a plane of
symmetry, then only half the current and iron
elements need enter the calculation. Likewise, if
it has two planes of symmetry, the calculation need
include only the elements in one quadrant. The C
coefficients are calculated for both the direct and
reflected positions of the elements, and the
results added or subtracted depending on whether
the magnetisation component of the reflected
element has the same or opposite sign as the
component of the direct element.

IV. How the GFUN Package is Used

Data Preparation

To begin a new problem in GFUN we might
specify the B-H curve of the iron and the symmetry
the magnet is to exhibit, ego no symmetry, dipole,
quadrupole, or axial symmetry. Next the iron and
current regions are specified. An advantage of
the GFUN package is that new shapes of elements
and arrays of elements can be added to the IIDRAWII
sub-program without requiring extensive re
programming of subsequent sub-programs. Shapes
that have proved useful are: triangles, rectangles,
arrays of triangles or rectangles, and annular
sectors or quadrilateral regions mapped by tri
angles. Examples can be seen in Figure 4.
For current elements, the current density
or total current density or total current are
also specified. Elements can be deleted, replaced,
rotated or translated; and after each change they
are drawn on the screen for checking.

Calculation

The GETM subprograms calculate the magnetisa
tion of the iron elements, as described above.
After each iteration the greatest change in field
in an element is displayed, until convergence is
reached. All data on the problem can at any stage
be stored on a disk data set, then read back later
and calculations resumed.

Finding the magnetisation of an iron array of
N elements requires repeatedly solving a set of 2N
equations and thus stoting a 2N by 2N matrix. For
more than 32 elements, calculation of the magnet is
ation is done off line. In three dimensional prob
lems, in which 3N equations must be solved and in
addition more elements are usually needed, the
magnetisation calculation is always done off-line.

619

Display of Results

Once the magnetisation Is known, the field at
any point can be found immediately. The field due
to the current is calculated directly, and the
field due to the iron is evaluated by Eq (4) with
the C coefficients calculated for each source ele
ment and the specified field point.

The GETB subprograms permit the field at any
specified point to be typed out, but also permit
several optional graphical displays of the field.
The variations of the total field, any component
of field, or its homogeneity along any horizontal
or vertical 1ine can be computed, and its graph
displayed. See, for example, Fig. 2, 3, and 8.
Also contours of equal strength can be drawn over
a region, for total field or any component. This
option is of obvious value in judging the homo
geneity of the field in its useful region, but is
also useful in finding where the highest field
occurs in a superconducting coil. See for example
Fig. 9 and 10.

V. Optimisation

It was decided at the outset that we should
include both automatic and manual optimisation in
the GFUN program. So far we have concentrated
upon the problem of determining conductor shapes
to achieve high homogeneity. However the system
is capable of general isation so that any reason
able function of the magnetic field can be mini
mised over a defined region. The command OPTI
is used for optimisation. The user specifies an
ell iptical region over which the field has to be
uniform and the parameter of the conductor he
wishes to vary. Thus, for example, if the cond
ucting elements are set at right angles all the
x coordinates of the bottom left hand corner
may be varied to find the optimum positions.
Alternatively the positions may be fixed and the
length of the rectangles varied to determine the
optimum size. The upper and lower limits may
also be specified to prevent overlapping and non
practical cases.

The program chooses suitably spaced points
within the elliptical region and constructs a
function by forming the sum of squares of the
quantity ~B

Bo
where ~B is the difference of the field at the
point and at the centre of the region, and B is
the value of the field at the centre of the region.
The function is minimised by use of an algorithm
desiQned by Powell. 10

Example: Design of a Superconducting Dipole

Suppose we want to design a superconducting
dipole magnet, with a specified cyl indrical iron
yoke and a specified useful area over which we
want to optimise the field uniformity. We could
start with four current regions, set up and drawn
by the DRAW subprogram as shown in Fig. 2. Homo
geneity along the x axis, calculated and plotted
by the GETB subprogram, is seen in Fig. 2 to be
poor. Figure 2, and in fact all the figures
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Optimisation by the OPTI subprograms results
in the conductor geometry shown in Fig. 3 with a
homogeneity of better than one part in 104.

except Fig. 1 are hard copies of the screen.

Next the iron yoke is put in, divided into
32 elements, again by the DRAW subprograms; see
Fig. 4. The GETM subprograms solve for the field
and magnetisation in each iron element. Fig.5
shows how the field converges in 60 iterations.
But as Fig. 6 shows, the total field now has more
than one per cent inhomogeneity. So the current
is re-optimised, and the magnetisation re
calculated. Because the change in magnetisation
is fairly small, convergence this time requires
only a few iterations. Figure 7 now shows a homo
geneity of one-half per cent, and repeating the
process yields 0.2, 0.09 and 0.04 per cent in
subsequent steps.

This design of a superconductor dipole magnet
with field homogeneity of 0.04 per cent was carried
out in a single on-line session. Figure 8 shows
the field homogeneity in both the x and y direc
tions. Figure 9 shows a contour plot of homo
geneity over the useful region and Figure 10 a
contour plot of total field in the windings to
reveal the point at which the field is maximum.

VI. Extension to Three Dimensions

The principal changes in going from GFUN as
described in the above sections to a three
dimensional version are:

1. In general the fields due to currents cannot
be found analytically as they can in two dimensions.

2. There are nine, rather than four, C coeffic
ients between any two elements, and the coeffic
Ients are more complicated.

Fig. 2. Optimised dipole magnet. Initial current
geometry and field homogeneity.
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Fig. 4. Optimised dipole magnet.
cyl indrical i ron shield.
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3. Consequently there are three equations per
iron element to be solved rather than two.

The fi rst point is met by numerical inte
gration, and merely adds length to the program.
For example, combinations of iron and current
elements i,n which the field from the currents is
axisymmetric and the field from the iron has
either two or three planes of symmetry, can be
used for C magnets, picture-frame magnets, or pot
magnets with non-axisymmetric return paths.

4. Usually more elements are needed to give a
satisfactory solution.

The second, third and fourth points result in
a larger number of equations to solve, requiring
more time and space. At present the iron elements
must be triangular or rectangular prisms, because
the C coefficients have not yet been found for
other shapes.

5. The geometry of the current and iron ele
ments is not completely specified by one picture
on the screen.
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Fig. 5. Optimised dipole magnet. Convergence of
the field in the iron.

Fig. 8. Optimised dipole magnet. Homogeneity
after several ootimisation cvcle~.
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Fig. 6. Optimised dipole magnet. Homogeneity of
combined fields from current and iron.

Fig. 9. Optimised dipole magnet. HOMOgeneity
contours.
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Fig. 7. Optimis~d dipole magnet. Homogeneity
after one re-optimisation.

Fig.10. Optimised dipole magnet. Contours showing
peak field in windings.
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Fig.12. Helium bubble chamber. Radial variation
of field in the median plane.

The field had been measured at the centre of
the magnet and at points where the edges of the
bubble chamber occur. The measured and calcul
ated field at these points are compared in Table
1. The results with 24 iron elements and with
52 iron elements are much the same and are one
per cent lower than the measured values. It
should be noted that assuming axial symmetry, ie.
replacing the return legs by an annular region as
well, gave results that differed from the measured
field by about 10 per cent.

ifUNWUMP. II III ~02 AT ~.JJ.2S fRAME 12.oo.o ~~~ ___,

Another calculation was performed in which
the quarter pole plate was approximated by forty
triangular prisms filling an annular region. The
total number of iron elements was 52. See Fig.12.
Figure 12 shows a projection of the iron on the
x-y plane, and a plot of total field against
radius.

VII. Results

The fifth point results tn an addition to
the graphics capabilities of GFUN. In trying to
present all geometrical information about a three
dimensional structure of elements, one view is
insufficient, and two or three orthogonal views
are not immediately interpretable, and may be mis
leading for complicated designs. A rotated proj
ection or a perspective view presents well-known
difficulties. If hidden 1ines are shown, the
picture is confusing at best and ambiguous at
worst. If they are not shown, all information is
not i~cluded, and some errors will not be detected.

The two dimensional version of the program
has been used extensively in the design of many
magnets including polarised target magnets,
inflector magnets, separator magnets, super
conducting dipoles, and others. Because of
space limitations details of these results will
not be included in this paper. However, some
results of calculations on a polarised target
magnet and a superconducting dipole appear in
another paper published in these Proceedings. 12

The following examples are given of the
use of the three dimensional version of the
program.

It has been proposed that the magnet of the
Rutherford Laboratory helium bubble chamber be
modified for use with a rapid-cycl ing hydrogen
bubble chamber. The coil separation would be in
creased and the iron return path modified. As
a preliminary step to the study of how these
changes would affect the field, we have used GFUN
to calculate the magnet as it exists and have com
puted the results with measurements of the field.

The magnet consists of a Helmholtz pair of
2 x 6 double pancake coils, two hexagonal pole
plates, and six return legs. In the calculation,
the field due to the coils was taken as axi
symmetric, and by the symmetry of the design, only
one octant of the iron was required. Each half
return leg was divided into eight triangular
prisms, a total of twelve in the octant. The
quarter hexagonal pole plate with a circular hole
was approximated by twelve triangular prisms
filling an annular region. Figure II shows
stereo views of one octant of the iron.

We decided to produce stereoscopic views on
the screen and attach a stereo viewer for viewing
them. That way the user has all the geometrical
information at one glance. The STEREO subprograms
enable the designer to look at any number of iron
elements he chooses and to view them from any angle.
Stereo views of the iron for two magnets appear in
Fig. 11, and 14. Presumably the reader who has
consulted Horse and Feshbach 11 has come to terms
with his ability or inability to view stereo pairs
on a printed page; viewing bright lines against
the dark screen with a suitable viewer is much
easier.
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TABLE I. Comparison of Measured and Calculated
Fields for the RHEL Hel ium Bubble

Chambe r Magnet

stepped pole tips. Second the yoke of the magnet
is mild steel and the pole tips are made of 38%
Cobalt iron, but GFUN accommodates at present a
single B-H curve for all iron elements.

Fig.15. C Magnet. Stereo views of step approxi
mation used for tapered pole tip.

f"U~WUMP. Ib lJI "'72 AT 2J.20.21 FRAME 7

Fig.f4. C Magnet. Stereo views of one quadrant
of iron.

Point Measured Calculated Calculated
52 element Current

only
cm kG kG kG

(0, 0, 0) 20.95 20.86 14.83

(0, 0, 20.3) 19.82 19.97 14.41

(40.6, 20.3, 20.3) 22.52 22.49 15.67

~' ... , ....."'I..3. '2., 121 - 'tI7Z--AT j-2... e.~o FRAME 12

I

A year ago, a calculation was performed with
TRIM, assuming axial symmetry, to find the current
needed to produce a central field of 23 kG. Al
though a GFUN calculation assuming axial symmetry
disgreed with the measured field in the magnet, it
might agree with the TRIM calculation which also
assumed axial symmetry. So th~ same 36 element
GFUN geometry shown in stereo view in Fig. 13 was
rerun at the same higher current used in the TRIM
calculation. The TRIM calculation yielded a cen
tral field of 23.00 kG; GFUN gave a 22.88 kG.

Comparison of the respective GFUN calculations
with the actual measurements and with the TRIM
calculations suggests that GFUN promises to be
useful in three-dimensional field calculations.

Fig.13. He1 ium bubble chamber. Stereo views of
axi-symmetric model.

C Magnet

Extensive modifications of a C Magnet at the
Rutherford Laboratory have spawned several TRIM
calculations and some recent measurements. An
attempt has been made to calculate this C Magnet
with the three-dimensional version of GFUN but GFUN
is at present inadequate in two ways. First the
pole tips are tapered; but as GFUN accepts only
prismatic elements, the calculations must use

As it is a C Magnet, there are only two
symmetry planes and a full quadrant of the iron
must be calculated. The field due to the coils
is axisymmetric. A quadrant of the iron is shown
in stereo in Fig. 14. A quadrant of the C is
made up of 16 triangular prisms. The half pole
piece is approximated by two half-hexagonal
solids, each divided into 12 trian,ular prisms,
there are a total of 40 iron elements, Figure
15 gives a stereo view of the half pole piece.
Figure 16 shows an x-y projection of the pole
piece and a z-r projection of the curlent elements.

Two calculations were performed. In the
;irst the entire iron structure was assumed Made
of mild steel; in the second it was assumed to
be 38% Cobalt i ron. A curve of the variation of
total field against radius in the midpl~ne

shown for one calculation in Fig. 17.
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Fig.17. C Magnet. Radial variation of field.

The measured central field is 25.00 kG; the
field calculated assuming all mi ld steel is
20.28 kG; and the field calculated assuming 38%
Cobalt iron is 23.66 kG. The agreements are not
as good as with the helium bubble chamber magnet,
probably because of the inadequacies described
above.

VIII. Conclusions

The two.dimensional program represents three
major advances on most existing programs, and
the extension to three dimensions satisfies a
long standing requirement.

The first advance is in the use of the direct
method. The removal of the boundary condition
problem; the ability to represent accurately
small discontinuities in the conductors; and the
abolition of elements in the air regions are val
ua b1e f ea t ures .
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The second advantage is in the use of inter
active graphics. Data preparation is reduced to
a minimum and immediate visual checks are avail
able. Without these facilities the three
dimensional problem would be especially tedious.
Graphs can be plotted and contour maps drawn on
the screen, and hard copies taken of final re
sults. Design data and magnetisation data are
stored on disk in a named file for subsequent
interrogation or modification.

The third advance is in the use of optimisa
tion routines. Intel I igent use of the automatic
optimisation facilities by an experienced mag
net designer makes efficient use of the man
machine combination. The ease with which diff
erent designs can be tried encourages designers
to use their intuition.

Current effort is directed towards pro
gramming iron and current elements of general
shape,towards expanding the automatic optimisa
tion facilities, and towards improving the
generality of the three dimensional current
model.
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Two-Dimensional Calculations

Appendix: The C Coefficients

then Ck n =Re(G)=-Ck nX,Jl.X y,Jl.y

1 n
C =-1: (s i n2~J' -s i n2~J' -1)kx,R.x 2n. 1

J=

-i4>
a.=e J sin4>.

J J

tan- l (y.-y )/(x.-x )
J 0 J 0

+(sin~.cos~.-sin~. lCos~. ,)lnr
J
•'l'J J 'l'r J-

(A2a)

1 n •
= 2n: (-sln~jcos~j+sln~j_lcoS~j_l)

J=l

tan- 1(y.-y )/(x.-x )
J 0 J 0

_(coS2~j-COS2~j_l)ln r
j

(A2b)

Care must be taken in evaluating Eq (A2) to
use the correct value of the multi-valued arc
tangent function, especially in evaluating
them when the field point is inside the element.

1 n
and G=--2[ (a.+l-a.)ln (z.-z )

11'j=1 J J J 0

Eq (A2) can conveniently be written in
terms of the complex variables z = x + iy and
zo = X

o
+ iyo' If following Beth we let

(Ala)

(AI b)

(AI c)C =Cky,tx kx,ty

C = -cky,ty kx,..ex

if point k is outside element t (AId)

Equation (4) is a vector equation: both H
and M

i
are two component vectors, and C the mk

coefficient between element t and fleldk~oint k
is a two ~y two tensor. If we let r=[(xk-xt)2. +
(Yk-y~)2p,and At be the area at element to,
then the Ckt can be written as:

11. P M Morse & H Feshbach, Methods of Theore
tical Physics. (McGraw Hill, NY. 1953),
Vo 1. 1, p. v iii.

12. C WTrowbridge, Proc. 4th Int. Conf. on
Magnet Technology, Brookhaven (1972)

13. T D Peel, D Roaf, et al. Proc. 2nd Int.Symp.
Magnet Technology, Oxford, 1967, p.722

C = -I-Cky,ty kX,tx

if point k is inside element t (Ale)

If the magnet has one or more planes of
symmetry, the Eq (AI) are evaluated for the
direct element and for each reflected element;
the coefficients are added or subtracted
depending on the symmetry. Eq. (Alc)-(Ale) wil I
hold for each direct or reflected element separ
ately; but because the two components may be
added or subtracted differently they wil I not
hold in general for the net coefficients.

Equation (AI) can be solved analytically
if the element t is a polygon of n sides. Let
us simplify our notation by writing

where Re and 1m denote respectively the real and
i ma gina ry pa r t s .

Three-Dimensional Calculations

If in the steps leading up to Eq (4) we do
not integrate over z, the same Eq (4) results;
but now H k and Mt are three-component vectors
and Ckt i~ a three by three tensor. Let

and V
t

be the volume of element. Then

Let us use the subscript j to denote the vertex
of the polygon, taken in anti-clockwise order.
Then Eq (Ala) and (Alb) yield:

(A6a)
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(A6b)

with analagous expressions for the other seven
components. The diagonal elements obey:

C +C +Ckx,tx' ky,ty kz,tz

=0 if the field point k is outside the element t

=4 if the field point k is inside the element R.

(A7)

The Equations (A6) have been solved analy
tically for elements which are triangular or
rectangular right prisms oriented in the z
direction. Again let us adopt the notation

Let the subscript 1=1, 2 label the bottom and
top faces of the prism and the subscripts j,
m=l, 2, 3 label the vertices and sides of each
triangular face. Then if we introduce the
expressions:

-1
T•. =tanurn

I 2 13
Ck n =--2E (-I) E cos~.

x,~y 1T I=1 j=1 j

[sln~.(T ... -T. '+1 .)+coscj>.(L..-L. . I)]j Ijj l,j,J j Ij ',J+

(A9c)

1 2 • 3
Ckx,nz~2 (-1) IE -sincj>.(U... -U. , I .)

~ 1T I=1 j=1 j IjJ l,j+ ,j

(A9d)

1 2 i 3
Cky, nz==---t2 (-1) E cos cj> . (U. , . - U• "+ I •)

~ 1T i=1 j=l j Ijj l,j ,j

(Age)

Also

(z.-z ) [(y.-y )sin~ +(x.-x )cos~ ]
1 0 J 0 m J 0 m
r.. [(x. -x ) sin ~ - (y . -y ) cos cj> ]Ij j 0 m j 0 m

L. .• :-2
1 In (r ..+z.-z )/(r. ,-Z.+Z )IJ Ij 1 0 IJ 1 0

(ABa)

(A8b)

C = -C -Ckz., tz kx., tx kx, ty

if the field point k lies outside the element t

C = -I -C -CkZ,tz kx,tx ky,ty

V., =-21In[(y,-y )sln~ +(x.-x )cos~ +r .. ]
I jm j 0 m j 0 m 1j

(A8c)

we can write the coefficients:

1 2 ·3
Ck R.:z-L (-1) 1~_lsjncj>.

x, x 1T I =l J- J

[s In 41 • (T •.. -T.. .. ) - cos cj> , (L. . - L. '+ 1) ]j IJj 1,j+I,j j Ij I,j

(A9a)

I 2 13
Ck n =--2~ (-1) E cos~.

x,~y 1T I=1 j=1 J

[cos~. (T. ,,-T. '+1 .)+s Incj>. (L. .-L. '+1) ]J IJJ I,J ,j j IJ I,j

(A9b)
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if the field point k lies Inside the element t


