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Abstract

Nonlinearities of the iron in high-field mag­
nets are usually treated by the aid of mesh-type
computer programs. In this paper an alternate ap­
proach using a quasi-analytical method is suggested.
Since the field-current relationship of a cose mag­
net deviates even at 40 kG only by a few percent
from a linear law, it seems indicated to treat the
nonlinearities as a perturbation of the infinite­
permeability case. The method is, however, limited
to a geometry with rotational sYmmetric iron shield.
The application of this method to an actual magnet
is in progress, but a definite statement as to its
accuracy is not yet possible.

The relative simplicity of the perturbation
method suggested stems to a large extent from the
simple geometry of a rotational sYmmetric iron
shield (Fig. 1). The extension to magnets of dif­
ferent types, e.g. AGS magnet, picture-frame magnet,
etc., is not straightforward. In this respect, the
present method is inferior to mesh-type programs,
which in principle can treat any geometry.

We limit our_con~idera!ions to two-dimensional
magnetic fields, B = urBr+ueBe. As usual, we
search for a solution for the vector potential
X = uzA rather than the field directly. The field
is then obtained from

B= curl A (1)

I. Introduction which reads in circular-cylinder coordinates

II. Air-Core Magnet

The nonlinear DE (4) can be linearized by evaluating
y for a trial function which is not too different
from the correct solution. A first approximation
is obtained by taking the infinite permeability case
as trial function. A better approximation is, in
principle, obtainable by an iteration procedure.

In this section a method for the analysis of
the magnetic field due to an extraneous current dis­
tribution is elaborated, which matches the geometry
of air-core cose magnets (Fig. 1). The current den­
sity sex = seX(r,e) is limited to the region
ri < r < r o and exhibits in the absence of fabrica­
tion errors the symmetry properties

sex(r,e) sex(r,_e)

and s \.r,e) sex(r,e+n)

(2a)B
r

! oA
r oe

oA
Be - or (2b)

The vector potential A is the solution of the dif­
ferential equation (DE) (natural units are used
throughout) ,7

div(y gr"ad A) = sex (3)

with sex the conduction current density and y the
inverse of the permeability. y is assumed to be a
function of the absolute value of the magnetic
field, y = y(B), but otherwise isotropic. By using
the vector identity

div(sv) = s div ~ + v . g;ad s

with s and v arbitrary scalar and vector fields,
one can transform the DE (3) into (y = 1 at the
coil location)

- ex -1 - -div(grad A) = M = - s - y grad y. grad A. (4)

9

Fig. 1. Geometry of cose magnet.

The conventional and highly successful methods
for solving two-dimensional nonlinear magnetostatic
problems rely on some form of mesh-iteration proce­
dure. 1- 3 Analytical methods, on the contrary, have
in the past received very little attention. 4 ,5
Since, however, the field-current relationship of a
cose magnet deviates even at 40 kG only by a few
percent from a linear law and since the induced
higher harmonics are also very small, it is tempt­
ing to treat the nonlinearities as a perturbation
of the infinite permeability case. 6 The applica­
tion of a perturbation method to cose magnets with
nonlinear iron shield is the subject of this paper.

*Work done under the auspices of the U.S. Atomic
Energy Commission.

Considerable simplifications are achieved by repre­
senting the current density through the Fourier
series which has the general form
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For use later on we define

Taking into account the boundary conditions
one obtains after simple manipulations

r~ ro
1. J snex r-(n-1) dr

2n
r

"'exo
n

sex oex(r )
n n 0

and stex otex(r.)
n n 1.

Obviously, oex(r.) =
n 1.

for r i < r < r o (5)

The vector potential satisfies the DE (4)
which in the absence of the iron shield is simply

6 Aex = _ sex (6)

with n restricted to odd integers. (We will use
the convention that ~o expresses a sum over odd n
and ~e a sum over even n.) For certain geometries,
the Fourier analysis of the current distribution
can be done analytically, for others numerically
only, but this question is irrelevant in the con­
text of this paper and the knowledge of the s~x is
assumed.

(9b)

in which x and yare linearly independent solutions
of the homogeneous equation and w = xy' - yx' is
the Wronskian determinant. Putting

together with the boundary conditions that A~x and
dA~x/dr = A~ex are continuous at ri and roo A par­
ticular solution of (8) for the region ri<r<ro is
obtained in integral form8

in the region r < r.
1.

n
A

ex = ( -.!-) s tex (lac)n r. n
1.

and in the region r > r
0

( r: )

n

A
ex Sex (lad)n n

For the subsequent development only the coef­
ficients S~x are required, and it is immaterial
how they were obtained. To simplify the expres­
sions only "good" dipole magnets are considered in
the sequel, that is, only Six will be retained.

8
1S"'ex =

1 "2

III. Presence of Infinite Permeability
Iron Shield

One finds, indeed, that for the given coil geom­
etry S~x may be used as the single independent var­
iable.

3 3
r - r.o 1.

r
o

As illustration we give here the results for
a perfect dipole distribution, sex = 81 cose:

(8)

In view of the Fourier representation of the forc­
ing term it is advantageous to make the ansatz for
the vector potential

Aex = ~ AeX(r) cosn8 . (7)
o n

r r o
A~x= x Js~x Y w-

l
dr+ y J s~x x w-

1
dr (9a)

r i r

r r o
A,ex=x' I s~X y w- 1 dr+y' J s~X x w- l dr

r
i

r

The components A~x(r) must then each satisfy the
ordinary DE (ri < r < r o)

dA
ex

2
1 d ( n) _ .!!...- Aex = _ sex(r)
; dr r ~ 2 n n

r

x (r /r)n y (r/r.)n
0 1.

x' n+1 y' n-l
nCro/r) /r 0 n(r/r i ) /r i

w 2n(r /r.)n/ r
o 1.

leads to
n n

A
ex = ( r: ) oex(r) + ( ...!... ) otex(r) (lOa)n r.

1.

n+l n-l

A 'ex = _..E.... ( rro ) oex(r)+..E.... ( r ) otex(r)
r n r. r. (lOb)0 1. 1.

with r
ex 1 J s~x n+l dr0 rn 2n nr ri0

In the presence of a constant permeability
iron shield the solution for the vector potential
is usually found from DE (6) together with the
boundary condition that A and ydA/dr are continuous
at the iron-air interfaces. An alternate approach,
more suited to the subsequent development, consists
in introducing induced magnetization currents at
the interface. The vector potential is now deter­
mined by the DE

ex Ri Ro
M = - s - g f'(R

i
) - g O(R

o
) , (11)

where oCR) is the delta function with the p~operty

r fer) oCR) = feR)

Consistency requires that the line currents g
satisfy the boundary conditions
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gRO ; [(1 - y) ~~ Jl _8

o

In the case of infinite permeability y
(12) reduces to

Ri
g [ (y _ 1) dA 1

dr ~.+ E:
1.

(12a)

(12b)

o and

given by

(17)

It is worth noting that in agreement with intuition
the outer radius does not appear in this equation.
The magnetic flux density in the iron is, however,
dependent on Ro '

One finds the solution in analogy to (9):

Separating the effects due to the extraneous
currents and the induced magnetization currents
one can write A ; Aex + AFe . Subtracting DE (6)
from (11) leads to the DE for AFe; ~o A~e(r) cosne

6AFe ; _ gRi 6(R.) _ gRo 5(R ) • (13)
1. 0

(18)

(19)

(20a)

n+l n-l n+l

{( r;) + (:) (:0) }
o 0

(20b)

r
o

R~
1.

- 2n Sex
A ,00= n

n r [1 - (R./R )2nJo 1. 0

The expressions for the total field inside
the infinite permeability iron shield will be used
as reference in the nonlinear analysis. They can
be represented by (Ri < r < Ro):

2Sex n n n

A00 = n {( :0 )_(Rr ) ( R
r 0)}

n [1 - (R. /R ) 2n ] 0 0
1. 0

It should be noted that A
oo = 0 but A ,00 ~ 0 for

r ~ Ro ' which means that, indeed, the magnetic
field is parallel to the surface and vanishes
outside.

In the subsequent nonlinear analysis the
field level will be characterized by Six, which is
directly related to the dipole field inside the
coil for infinite permeability iron shield

3R~
2 1. 2 )

r o + ror i + r i

The total field inside the current coil is
given by (r < r i )

n n
A = ( L ) Stex [1 + ( r i )

n r. n R.
1. 1.

r n Sex

( R:) s~ex ] .
n

The second term in the square bracket expresses
the relative gain in magnetic field due to the
presence of the infinite permeability iron shield.
As illustrative example we consider again the per­
fe~t dipole, for which the relative gain is
(ro + riro + rl)/3RI'

(15a)

(14c)

(14b)

(14a)

(12d)

(12c)

n+l
r

( R: )

The magnitude of the induced magnetization
currents is given by the boun~ary conditions (12),
from which follows the coupled set of linear equa­
tions in the g~i and g~O

n-l
Ri 1 Ri 1 ( Ri ) Ro + ....!!....

gn ; '2 gn - '2 R gn r
o 0

Ri

[ ~~ ~. + 8
g

1.

and Ro
[ ~~ ~ - E:

g

0

- for the region Ri < r < Ro

R n n

AFe ; 1- {( --i ) Ri R. +( ...!.. ) Ro
R }n 2n r gn 1. R gn 0

0

- for the region r < R.
1.

n n
AFe;..L{( L) Ri R +( L ) Ro

R }n 2n R. gn i R gn 0
1. 0

- and for the region r > R
0

R n R n
AFe ; -L {( --i ) Ri

Ri + ( r
O

)
Ro R } .

n 2n r gn gn 0

IV. Perturbation Due to Nonlinear Iron

The exact DE for the vector potential in the
presence of a nonlinear iron shield follows from
(4) and (12) as

ex -1 -+
l:::.A = - s - y grad y • gr ad A

[ (y - 1) dA l 5(R.) - [( 1 - y) dA l 6(R ).
dr ~ + 1. dr ~ 0

i 8 0- 8 (21)

(16a)

sex.
n (ISb)

1 + (R. /R ) 2n
1. 0

1 - (R. /R ) 2n
1. 0

Ri= 2n
gn R.

1.

Separation of the coefficients is possible, lead­
ing to

n+l n+l
Ro 1 ( Ri ) Ri+.1 Ro _.!!... ( Rro )

gn = - 2' R gn 2 gn r
o 0 0

The presence of the iron shield increases the
desired field inside the current coils. According
to (14) the increase in the region r < ri is

2n
R

o

2

1 - (R. /R ) 2n •
1. 0

(16b)
The inverse permeability is now a function of the
absolute value of the local magnetic field B or,
in view of (2), a function of the absolute value
of the gradient of the vector potential, Ig;ad AI,
since
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from DE (21) and find the rigorous nonlinear DE

(27)

(28a)

(28b)

{
1 n = i + m

On (i+m)
0 n :f i + m

and

On Ii-ml = {
1 n = Ii ml

0 n :f Ii - ml

The boundary conditions (24) must be replaced by a
set of coupled linear equations in the GRi and GRo

n n

- sn - G~i 1)(Ri ) - G~o O(R
o

)

with

The determination of the functions ~, ~, and co­
efficients y~1., y~O represents a considerable frac­
tion of the computational work.

Limiting the solution to "good" dipole mag­
nets, i.e., Aoo = Ai cose simplifies Eq. (23) which
is now replaced by the following set of coupled
ordinary linear DE:

dM 2
1 d (r __n_)_.!!..... M +D =r dr dr 2 n n

r

and

D = -2
1 ~ ~ 0 ('+ ) (M

r
M.' + i Me 6A. /r)n i m n 1. m m 1. m 1.

+ -2
1 ~ ~ 1) ,. I (M

r
M! - i Me Mi/r) (29)i m n 1.-m m 1. m

in which the Kronecker symbols have their usual
meaning

(22)

-1 ->
- Y grad Y . grad A

_ [_ oM + Y oA 1
or or .la +

i 8

It is now possible to linearize DE (22) by
evaluating y for a known approximate trial solution
Atr . It is tempting to start with Atr = Aoo , but if
by some other way (mesh iteration) a better solu­
tion would be known, it also could be used. The
approximate, but linear DE describing the nonlinear
iron takes the form

00 ex t OAoo~ [ OAOO~M = - s - - - O(R,) - - o(R )
or + 1. or _ 0

i 8 0 8

It was pointed out in the introduction that
the nonlinear solution differs not too much from
the infinite permeability case. It is, therefore,
natural to consider the finite permeability as well
as the nonlinear case as a perturbation of the in­
finite permeability case,

6.6A+ Y-1 g~d Y . gr~d 6A =

- y-l gr'ad y' gr'ad A
oo

_ GRi O(R
i
) - GRo O(R

o
) (23)

with A
oo

in the iron region given by (20). In order
to obtain the DE for the perturbation 6A we sub­
tract (11), Lhat is

6. 6A =

Making the usual ansatz oA = ~o oAn cosne re­
sults in a coupled set of linear DE in the oAn'
Proceeding towards this goal one has to obtain the
Fourier representation of

together with the boundary conditions

[ ( -1) £.M+ oA
oo

l
y or y or .la

i+ 8

(24a)

(24b)

G
Ri

[6A~ ~ + E
Ri

+ F
Ri

OOa)n n n
i+ 8

G
RO

+ [6A~ ~ _8

_ ERo FRo (30b)n n n
0

with

F
Ri ( Ri +! Ri ) [A'oo ~ (3la)1 Yo 2 Y2 1

i+ 8

F
Ri 1 (Ri + Ri ) [ ,00 ~ (3Ib)n 2 Yn-l Yn+l Al i+

8

The exact general solution of (27) can be
found by numerical methods only. A first approxi­
mation may be obtained by truncating the Fourier
series for OA and retaining only the dipole term
6A = &AI cose. After having obt~ined this solution,

Ro + '" RoYo ~e Ym cosme

and, correspondingly,

-1 -> -1 ~ -+
y grad y = y dB grad B

= ~ {MF(r)+ ~ MF(r) cosme}roe m

+ t:e {~e M~(r) sinme}

(25a)

(25b)

(26)

o Ri [ , 1
n(i+m) Ym Mi..1a +

i €

+ ! L: L: 1) Ri [M' 1
2 i m nli-ml Ym i ~ +

i €

arid corresponding expressions for pRO and ERo •
n n

(32)
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one extends the series to the sextupole term and
finds the solution for 0A3 while keeping oAl un­
changed. This procedure can be repeated until all
harmonics of interest are determined. In this
paper the solution will be limited to the dipole
term, the details of which will be elaborated in
the subsequent section.

v. The Dipole Approximation

In this section, a solution of DE (27) will
be derived under the assumption that oA ~ oAl cose
represents an adequate description of the nonlinear
effects. We now have the DE

1 d ( d OAl ) 0A1-- r-- --+D(M)=r dr dr 2 1 1
r

(33)

r r

Sl
1 -1 J r

2
Dl(xl ) dr _! r J Dl(xl ) dr= 2" r 2 (38a)

Ro Ro

r r
, 1 -2 J 2 Dl (xl) dr -i J Dl (xl) dr (38b);1 = - 2" r r

R Ro0

and a corresponding solution for TIl'
r r

TIl = ~ r -1 Jr 2
Dl(Yl) dr - i r J Dl(Yl) dr (38c)

Ri Ri
r r

TI{
1 -2 J 2 Dl (Yl ) dr- t J Dl(yl ) dr (38d)- 2' r r

Ri Ri

.-R R 1 R
11 = Yo + 2" Y2 - I

with the F~i and F~o as previously defined by (31)
and

in which sl is given by (28a) and

Dl (oAl ) = (~ + ~ M~ ) OA{ - ~ ~ OAl/r (34)

The coefficients G~i and Gfo follow from the bound­
ary conditions

r R o

+ xl(r) J SlYlW~l dr+ YI(r) J slxlw~l dr (39a)
R i r

After ~aving determined Sl and ]1 as outlined
one proceeds to write the solution of (33) in the
form

(35b)

(35a)G
Ri

~i [OA' ~ + F
Ri

I 1 I + 1
i e:

G
Ro _ ~o

[M{ ~ -e:
_ FRo

1 I 1
0

To obtain the general solution of DE (33) it
is necessary to first solve the homogeneous part of
(33), the solutions of which may be written as

Th k ff · . Ri d Roe as yet un nown coe l.Cl.ents G1 an G1 are
now determined by substituting (39) into (35) which
leads to the coupled linear equations

In general, Sl and TIl must be determined by numer­
ical methods. One possible approach is to rear­
range the homogeneous DE into the DE

and a corresponding equation in TIl.

It is now possible to derive integral equa­
tions which are readily solved by point-by-point
integration. 9 Again using (9) one finds

xl R Ir + ;1 Yl r/R. + TIl0 l.

x' = R Ir2 + ~{
,

l/Ri + TI{I 0
Y1

wI = xIY{ - ylx{

To satisfy boundary conditions one must impose

st J+ F~i1
(40a)

Sl J- F~o
(40b)

R

81
=Jo -1 drsly1w1

R.l.
R

S+ = JO -1
dr1 slxlwl

~

XR
xl (R) IW I (Ri )1

X,R X{(R) IWI (Ri )
1

~ Y1(R) IW
I

(Ro)

y,R y{(R)/wl(Ro)1

and

G~o= _ r~o [X{RO G~i+ y{RO G~o+ X{(R
o

)

with

(37)

(36b)

(36a)

o

o

ld(,) 12- - r ~ - S r =- D (x )r drl 1 1 1

and
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By solving (40) one obtains for the coefficients

(1 + ~o y,Ro ) {~i' t Ri } r
Ri ,Ri {~O , Ro }

G
Ri 1 1 Yl(Ri ) Sl + Fl - 1 Yl 1 xl(Ro) Sl + Fl (4la)
1

(1
_ r Ri X,Ri

) (1 + ~o y,Ro ) + ~i rRo y,Ri X,Ro
1 1 1 1 1 1 1 1

(4lb)

Actually, the change of the field in the
vicinity of the axis due to saturation represents
a quantity of interest and is directly accessible
to experimental verification. This change is
given by (r < Ri)

r { xl (Ri ) Ri 1 Ro t}
0A1 = R:"" w

1
(R.) Gl + wl(R ) Gl + Sl . (42a)

1 1 0

The leakage field outside the iron shield,
which is also accessible to measurement, is given
by (r > Ro)

R { . Y (R )
£.A =....2. __1__ GR1+ .-!...-.£... GRo + S} (42b)
Ufi l r wI (Ri ) 1 wI (Ro) 1 1 .

The numerical evaluation of the dipole solu­
tion is in progress. The results obtained so far
seem to indicate that the use of the infinite­
permeability case as trial function does not
yield results of sufficient accuracy, limiting
considerably the applicability of this method.
It is possible that a simple iteration procedure
could overcome this limitation. However, a defi­
nite statement as to the accuracy of the perturba­
tion method is not possible at the present time.
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