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Abstract

1. Forces on the Currents

- --dF = id£ x B

(5)(B =0 when H =0)

which shows that the energy depends hot only on
the final value of Hand B, but also on the mag­
netization curve. The volume force density may
be derived from the energy. Consider a volume
element dV fixed in space and assume a virtual
displacement Or of the material. Because of this
disph.cement, the value of H, B, and fJ. in dV will
chang~. The shaded area in Fig. 1. representing
the energy density. is replaced by the area inside
the dashed line (a'b'c'). The infinitesimal change
of Urn is composed of two parts.

H

OUm =H· 013 -J 0HB' dH (4)

o

The total energy of the magnetic field is given by

the e::e:T:mdV"J (Iii. dB] dV (3)

V V a

The first term on the right gives the energy den­
sity change due to the real change in B. The sec­
ond term is determined by the change of the mag­
T'~tization curve. Assume that the residual mag­
netization is negligibly small so that one can write

(l)

cylindricalNo net radial forces exist because'
symmetry.

The force exerted on a current element id.t
by a magnetic field B is given by

FORGY is an auxiliary computer program of
TRIM l, 2 which calculates the FORces and enerGY
in a magnetic system. It reads a specified "dump"
on a previously created TRIM magnetic tape and
calculates the stored energy of the steel and air
regions. Options exist to calculate the forces on
mesh points which have an assigned current and
calculate the forces on any curve formed by lines
joining mesh points.

The x and y components of the force per unit
length are calculated for each mesh point which
has an assigned current. In cylindrical geometry
problems, the tension and total force at each cur­
rent element are calculated by the equations

Tension = RIB
z

Z force = 21TRIB
r

II. Maxwell's Stresses in the Magnetic Field

As s ume that the induction B is known .. s
a function of H, say from the magne ~izatic- cun
like that shown in Fig. l.

The density of the magnetic energy is given

'. I
I

(6 )

(7)dV[- -H· OB-OWm )

Substituting this in Eq. (4), one obtains, using
Eq. (3),

Now assume that the location of the volume ele­
ment dV is given by the vector r. Due to the vir­
tual displacement or, there is in dV material
which before the displacement is located at r - 0-;'
The fJ. in dV, after the displacement, is then

(2)

b l

b

c

U rH.dBm ,
J

B ~ a
C' t- ---
c ~.r---_ r

!

by

or

a'
!

a "

Figure 1

. ..=:=- H

(8)

*work performed under the auspices of the U. S.
Atomic Energy Commission and the U. S. Naval
Ship Research and Development Center.

(9)

Substitution of this in Eq. (7) gives
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H

J--J- --oWm = [H· oB + or· grad fJ.H· dH] dV

V 0

(10) J-- J- 013 -+ -+ -+E·jdV=- [H·-at-(uxB).curlH]dV (19)

V V
or

all that remains is

A medium moving with velocity u«c, obeys
the Maxwell's equations

(25)

(22)

(24)

(23 )

(21 )

J --- (f.u)dV

V

QW
m

oW = J(1.0;) dV

V

6W = J(1· 6;) dV

V

dW
m

dt

dW
m

dt

or

Ignoring the irreversible joule heat term

J (Eo T) dV and comparing Eqs. (21) and (24)

V

(20)

f
-+

-+ oB -+ - -+ -+-+
H· at dV = - JE· j dV +J(Bx curlH)· udV .

V V V

-Jf·r dV + J[(Bx curlH)

V V

H

+oJ grad fJ. H.dH]· ;; dV

Let 1 be the volume force density. The force
acting on a volume element dV of the material is
f dV and the work done by the volume forces is

where 6-;. as before. is the virtual displacement.
This work is equal to the decrease in the magnetic
energy.

or since

yields H

£= -fJ.HxcurlH- JgradfJ.H.dH

o

Substitution of this in Eq. (11) gives

( 17)

( 13)

( 12)

(14)

J--dV - E· j dV •

V

{- - -}div Hx (ux B)

-- oB - -curl E = - at + curl (ux B)

curl H = T

-J
V

Using the vector identity

f
-+

- - - oB -+ -+-+E·jdV = - f [H· at - H.curl(uxB)]dV.(16)

V V

and noting that

Multiplying the first of these equations by HdV
and the second by EdV, subtracting and integrat­
ing over the whole system, gives

J- - - -(H· curl E-E· curlH) dV =

V

Since

J(H. curlE-E. curlll> dV =

V (15)

!diV (ExH) dV = !(EXH)odS=O

V S

dW _ H

d~ = J[i~. ~~ +J(grad fJ..;;)H. dH] dV (11)

V 0

where ;; is the velocity of the virtual displace­
ment.

JdiV {HX(~XB)} dV =f{HX(~XB)} odS= 0

V S (18)

Using the vector identity

- -+ 1 2 -+ -+
H x curl H = 2" grad (H ) - (H·I\7) H (26)

results in gives
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It is not difficult to see from Fig. 1 that
(35)

(34)J1 dV t Jt dS = 0

V S

J(; x £) d V t J(; x t) dS = 0

V S

It shall now be shown that the nine components
T

k
,.£ represent forces acting on unit elements of

area (stresses). Since the magnet is ill static
equilibrium, the resultant force is zero and the
resultant torque is zero.

(27)

• (28)

H

- - -1 21J 2f = (B.V)H-Z"fJ.gradH -'2 gradfJ.dH

o

- 1 2 -. -f = - '2 fJ. grad (H ) t fJ. (H' '\7) H

H

J
-+-+

- grad fJ. H· dH

o

-where t = surface force per unit area of S.

Introduce three vectors;, b, -;, which satis­
fy the equation

t = -a. Ir = ant ant a n
x xx yy zz

H H

oJ"B. dB. = J0 fJ. B.. dB. t :B. 0 B.

o 0

H

1 J 2 1 2=- ofJ.dH t- fJ.oH
2 2

o

(29)

t =b.Ir=bn tbn tbn
y xx yy zz

(36)

Thus,
H

J- -grad B·dH

o

H

1 J 2 1 2="2 (grad fJ.) dH t '2 fJ.g rad (H ) (30)

t =c·i=cn tcn tcn
z xx yy zz-where n is the unit outward normal to an element

of S. Substitution of these relations in Eq. (34)
gives

JfxdVt J;.;dS = J(f
x

t\7·i) dV = 0

V S V

Using this relation and noting that (V, B) H = 0,
one finally obtains

H

-; = ("B'V)H + (V·E)H - grad JE'dB. (31)

o

Eq. (31) can be rewritten in the form

Jfy d V t Jb· ;-dS = J(fy t '\7 .b) d V = 0

V S V

ffzdVt J-;.;dS = J(fzt'V'.;)dV = 0

V S V

(37)

Hence,

aT aT aT
f =~t--I:l..t~
Y ax ay az (32) f t'V·b=O

y
(38)

The rotational equilibrium expression (35) gives

f
aT aT aT

z=~t~t~
ax ay az

where
3

H

Tk,.e = Hk·B.e - Sk,.e JB'dH (k,.e =x,y,z)

o
J(yf - zf ) dV t J(yt - zt ) dS = 0z y z y

V S

(39)

o
k • .e

o
k,.£

1

o

when k = .e

when k I: .£

(33) or

(
i (yf - zf ) dV t

j z Y
V

r - --J (yc-zb)· n dS = 0

S

(40)
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which gives

yf - zf + '\l • (y;-zb) = 0
z y

(41 )

H

J- -p = - B·dH
2,3

o
(48)

or

yf - zf + y'\l . ; - z'\l·b + c - b = 0 (42)
z Y Y z

Making use of the fact that f + '\l. ; = 0 and
z

f + '\l·b = 0 [Eq. (38)], one finds c =b .
Y Y z

In the same way, it can be shown that a =band
y x

a = c Comparison of Eqs. (32) and (38) gives
z x

-a = T T+ T J" + T k
xx xy xz

(43)

-c = T 7 + T "+ T kzx zyJ zz

On the principal axes, the Maxwell stress tensor
takes the form

JHdB 0 0

T = 0 - JB d H 0 (49)

o 0 -JBdH

Substitution of this in Eq. (44) gives

t = -; JHdB = -; p
x x x x

t = +; JBdH = + n p (50)
y y y y

t = +n JBdH = +; pz z z z

where i, j, and k are unit vectors in the x, y,
and zdirections. Eq. (36) then becomes

-t = T n + T n + T n
x xx x xy y xz z

The principal axes are so oriented that the coor­
dinate axis corresponding to the root PI is paral­
lel to B, while the other two axes corresponding
to P2 and P3 are perpendicular to B.

-t = T n + T n + T n
y yx x yy y yz z

(44)
III. Applying the Maxwell Stresses to TRIM

The "Maxwell" tensor given by Eqs. (32) and
(33) is a symmetric tensor and can, therefore,
be reduced to three components by transforma­
tion to the principal axes. To find these principal
axes, one solves the determinant

One sees from these relations that the diagonal
terms act in the direction of the normal to the
surface element and are, therefore, pressures
or tensions. The remaining six components are
shearing stresses.

where p is the force per unit area of the surface
parallel to the normal. Using Eq. (33), one ob­
tains

H 3 H 2

(p +j B· ciH) + (p +!B· ciH1Ii· B=0 (46)

B
a

~~--

j

A typical field line is also shown. Consider the
Maxwell stresses of the AIR triangle on the sur­
face j i. The outward normal n

a
and stresses

t 1 and t 2 are shown below.
a a t i

n
a

' IaZ/Ba'" /~" !

Steel ~
./ tal

/ Air
/

/

4"
j

The computer program TRIM generates a
triangular mesh of various size and shape trian­
gles. A general interface between air and steel
is shown below as the line j i common to both tri­
angle s and extending to infinity perpendicular to
the plane of the paper.

(45)

(47)

-t = T n + T n + T n
z zx x zy y zz z

H B

-- J- - J- -PI = H'B - B·dH = H·dB
o B o

(B
O

= B when H = 0)

IT -0 pl=Ok,1. k,1.

or
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Now consider the Maxwell stresses of the
STEEL triangle on the surface j i. The outward
normal n and stresses t I and t Z of the STEEL
triangle In j i are shown .gelow. s

n
s

forces are to be calculated on mesh points having
assigned currents. There is no need to specify
which mesh points have assigned currents since
the program searches for them. Another digit
determines if the forces are to be calculated on an
AIR-STEEL interface. If so, the mesh row
(column) coordinates must be specified as well as
the B-H table that was used when the problem was
solved by TRIM. A third digit determines if the
stored energy in the AIR and STEEL is to be cal­
culated. Again, the B-H table is needed for this
calculation.

V. Perfect Dipole Magnet Infinitely Long
(TTEST) Test Case

By Eq. (50), the magnitude of the stresses
are:

The cross section of one quarter of this mag­
net is shown below.

(55)

(56)

fJo = infinity

o
o

The general equation to be solved is:

\7x\7 xA = fJoT

which reduces to

(51 )

(53 )

(54)

B

J~ dB = B
2

fJo O 2fJoOo

H H HZ

J J
fJoO · B 2

PaZ BdH = fJoO
HdH = -Z- = , (5Z)

2fJo
Oo 0

B

JHdB =area above the curve
B of Fig. 1.

o
HJ BdH = area below the curve

o of Fig. 1.

B

Pal = JHdB

o

where n is the region number.

Note that p 1 is the energy density of the steel
s .

and p Z may be called the coenergy denslty of the
steel.

s
It is apparent that the stresses depend not

only on the present values of Band H in the steel,
but also on the B-H characteristics of the steel.

The forces of each stres s are obtained by
multiplying by the area perpendicular to the
stress. These forces may then be resolved into
normal and tangential forces which are added al­
gebraically and then resolved into x and y compo­
nents.

Hence,

oA
ox

A
n

B
n

(57)

(58)

(59)

At the boundary of region <D and @. the tan­
gential components of H are continuous and the
vector potentials are equal. Solving the resulting
four equations for C

ll
, C

IZ
' C Zl ' C

ZZ
' and sub-

stituting into Eqs. (58) and (59) yields

IV. Specifying the Desired Calculations

The computer program TRIM produces a
magnetic tape which contains variables that spec­
ify the mesh geometry in "dump" number 1.
"Dumps" Z, 3, ... specify a particular solution
and contain quantities such as the vector potential,
the inver se of the permeability, etc. for each
mesh point. The "dump" number desired must be
specified as input to FORGY. A single digit
punched into the input card determine s if the

(60)

(61 )
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AirAir

o
o

t
Reflecting Boundary

z 1 .--.----...------.---.~.,

(65)

(6Z)

(63 )

The stored energy in Region (}:' is then

Similarly in Region @, the stored energy is

Since the field is normal to the pole at y = y 1 '
the normal force per unit length for Region Q) is
given by:

The z axis is an axis of rotation. Hence this case
consists of an infinitely long cylindrical coil hav­
ing inner radius, r I' and outer radius, r Z' inside
of an infinitely long steel cylinder of inner radius,

r 3' and outer radius, r 4'F
J..
L

where by Eq. (51),

(66)
The general equation (55) reduces to

~ (!. O(rA»)
or r or

(70)

(72)

(71))B
z

3 l
.r r

- j.LJ"3 + C nl 3 + C nZ

The z components of the field for each region
turn out to be

This results in

The constants C
nl

and C Z for region ® are ob­
tained by solving the ten ~quations in ten unknowns
obtained by applying the conditions that the B / j.L
and A

e
are single valued at r

l
, r

Z
' r

3
, and r:,

and that rAe is zero at r = 0 and r
5

.

(68)

(67)
B Z

HdB 1
= Zj.LO

F
J..

L

Similarly, for Region .!-/, the normal force is

Xz Z
F

J
j.Lo(NI) (xl-Xl)

J... PI dx = (69)
L

6Yl
Z

Xl

Hence,

The numerical results of the energy and
force calculations are given in Table 1. The
energy is given in joules/meter and the forces
are in newtons for the rectangular geometry test
case. Agreement between the total value calcu­
lated by FORGY and the exact value is seen to be
better than O. l percent.

VI. Cylindrical Geometry Test Case

B 3 + j.Loj (rZ-r)

I 3 3'
- fLO j \ r l - r 1 i
I r 2 2 1 fL4
. 3 Lr5 +r4 i,j.LO

B 4 fL4
B

3 /j.LO

.
2 'fL4

-,

1\ - r
3

;--
; . fLO

(73)

(74)

(75)

The eros s section of a small section of this
case is shown below.

(76)
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Integrating the energy density over each region
results in the total energy for each region.

Therefore, at r 3 the force is

Similarly, at r 4 the force is

(89)

(88)

(87)

(86)

zl

= r 4 J !P42-P S2) dz

o

F
r

e

F
r

e

(77)

~Zl {Z (4 4)
W2 = 12 3fJoOJ r 2 - r 1

-8 (i B
3+jJ.o/rZ) (rz

3-r I
3

) (78)

2

+6 (B3 Z z] (r:-rlZ)}~+2jB3r2+lJ-oj r 2

W
3

2
(r 3

2
- r 22) /21J-0

(79)= 1TZ
l

B
3

2
(r4

2
-r3

2
) /21J-4

(80)W4 = 1TZl B 4

Ws
2

[r S2 - r 4
2

) /21J-0
(81 )= 1TZ

l
B

S

From Eq. (SO) and the figure below, it follows
that the radial force per unit radian on the steel

at r 3 is

(82)

The re sultant z component of the force at r 3 and
r 4 is zero since the areas perpendicular to P3l'
p41' and PSI are zero. The result of this test
case is shown in Table 1. Agreement between the
force calculated by FORGY and the exact value is
about 0.6 percent. The unit of energy is joules
and the unit of force is newton/radian.

Hence,
H

3 B 2

J B
3

dH
3

3
P32 = 2IJ-

O
0

where Pn2

H
n

J
o

B dH
n n

(83 )

(84)

VII. General Cylindrical Geometry Case

The real merit of this program is to calcu­
late the steel forces on complicated geometries
such as the cylindrical model of the streamer
chamber magnet at the Zero Gradient Synchro­
tron. The magnet geometry and flux lines are
shown in Fig. 2. The normal components of the
forces on the iron surfaces are shown in Fig. 3.
Because of the difficulty of showing the tangential
components of the forces in Fig. 3, the largest
values are given in Table 2. The forces have
units of newtons per radian.

i,
Steel j

B
4

1,
Also,

Air IB
, 5

(8S)

Summary and Conclusions

It has been shown how the computer program
FORGY uses the results of TRIM to calculate the
forces on each mesh point which has an assigned
current. The Maxwell stress tensor has been
derived for a general case and the stress compo­
nents, and hence, the resultant forces on the
steel surface depend not only on the present value
of Band H, but also on the magnetization curve
of the steel. Two cases, cal,.culated by FORGY
were compared with analytical calculations and
the results agreed to better than one percent. A
third case, which could not be calculated analyt-
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ically, shows the real usefulnes s of this program.
It should be noted that TRIM assumes no volume
deformation due to the magnetic forces and this
assumption also applies to FORGY.
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Table 1

Rectangular Geometry Test Case

--r-------------- --
FORGY Exact FORGY Force Exact Force

Region Energy Energy % Dif£. on Pole on Pole % Diff.
---

I 513.184 513.402 - .04 -20206.82 -20212.68 0.0

2 84.193 85.567 -1. 61 - 3316.16 - 3368.78 -1.6
---

Total 597.38 598.969 -0.27 -23522.98 -23581. 46 -0.2
--~- -----'--

Cylindrical Geometry Test Case

-----'-
FORGY Exact

Region
_En~~gy Energy % Diff.

--

I 3.968 3.935 +0.8
1------f---~--- ._- --------

2 3.262 3.272 -0.3

5279x 10-4 -4
-1. 23 .5345 x 10

r--- --

1506 xI 0- 1 -1
+0.64 .1497 x 10

-4_5+ - - .9621xl0 --
---

Total !

Iin air 7.230 7.207 +0.3

Total in
--t------L -\

air and 7.245 7. 222 ,+0. 3 I
steel I I

J J

r FORGY Force Exact Force % Diff.
-1-----

-4 -4
-0.6r

3 -8.l74xl0 -8.l25xlO

-4 -4
-0.6 Ir

4 +10.90xlO +10.833 x 10

')92



Table 2

F F R Z F F
r z r z
(newton/radian) (inch) (newton/ radian)

-2864. 155524. 1.250 94.0 -101. - 2060.
-8770. 153275. 3.750 94.0 -128. - 6754.
-2471. 142588. 6.250 94.0 14. -11300.

367. 127547. 8.750 94.0 161. -15956.
1091. 108648. 11. 250 94.0 376. -20757.

127. 85362. 13.750 94.0 674. -25787.
- 768. 60673. 16.250 94.0 844. -31315.
- 622. 39246. 18.750 94.0 803. -37677 .

312. 23749. 21. 250 94.0 957. -44773.
546. 12511. 23.750 94.0 1536. -52410.
47. 6102. 26.250 94.0 2556. -61257.

92011. ·19184. 28.750 94.0 4870. -71860.
77166. - 4530. 31. 250 94.0 11852. -83903.
62133. - 2790. 33.750 94.0 36825. -90326.
55701. - 2132. 36.286 109.0 -6464. -17165.
39102. 1489. 38.857 109.0 1009. -14174.
- 399. 472. 41.429 109.0 2306. -10910.
-2216. 1526. 44.000 109.0 2152. - 7691.
-8154. 3885. 46.571 109.0 1626. - 4638.

-27645. 5683. 49. 143 109.0 993. - 2091.
-58955. 5501. 51. 714 109.0 317. 516.
-84630. 8952.
-95254. 27057.

53
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~5 53
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~
+ •
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Figure 3

Streamer Chamber Magnet
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o
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Figure Z

Streamer Chambe r Magnet
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o 14 31 36 R(in) 58'60 78 83 90

16
13

58

37

94 +---+-'I--+-'l-\-'M'
92

R Z

(inch)

32.227 37.0
34.682 37.0
37.136 37.0
39.591 37.0
42.045 37.0
44.500 37.0
46.955 37.0
49.409 37.0
51. 864 37.0
54.318 37.0
56.773 37.0
35.0 95.5
35.0 98.5
35.0 101. 5
35.0 104.5
35.0 107.5
31. 0 17.5
31. 0 20.5
31. 0 23.5
31. 0 26.5
31. 0 29.5
31. 0 32.5
31. 0 35.5

35
131

109

Z
(in)
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