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Abstract

FORGY is an auxiliary computer program of
TRIM!: 2 which calculates the FORces and enerGY
in a magnetic system. It readsa specified''dump"
on a previously created TRIM magnetic tape and
calculates the stored energy of the steel and air
regions. Options exist to calculate the forces on
mesh points which have an assigned current and
calculate the forces on any curve formed by lines
joining mesh points.

I. Forces on the Currents

The force exerted on a current element id#
by a magnetic field B is given by

dF = id? x B
The x and y components of the force per unit
length are calculated for each mesh point which
has an assigned current. In cylindrical geometry

problems, the tension and total force at each cur-
rent element are calculated by the equations

Tension = RIB
: (1)
Z force = ZnRIBr
No net radial forces exist because - cylindrical
symmetry.
II. Maxwell's Stresses in the Magnetic Field

Assume that the induction B is known ¢s
a function of H, say from the magneizatic- curs
like that shown in Fig. 1.

The density of the magnetic energy is given

by C
!' — —
Um = H-dB (2)
J
B a
’; b
c P— L
b /b
]
al Figure 1
H
a

*Work performed under the auspices of the U, S.
Atomic Energy Commission and the U. S. Naval
Ship Research and Development Center.
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The total energy of the magnetic field is given by

the expression c

f fﬁ-dﬁ av

v a

= U dV =
m m

e

w (3)

which shows that the energy depends not only on
the final value of I and B, but also on the mag-
netization curve. The volume force density may
be derived from the energy. Consider a volume
element dV fixed in space and assume a virtual
displacement 6 of the material. Because of this
disp!rcement, the value of H, B, and p in dV will
change. The shaded area in Fig, 1, representing
the energy density, is replaced by the area inside
the dashed line (a'b'c'). The infinitesimal change
of U is composed of two parts.

" H

U =H-6B -f 8, B dit
0

m

(4)

The first term on the right gives the energy den-

sity change due to the real change in B. The sec-
ond term is determined by the change of the mag-
retization curve. Assume that the residual mag-
netization is negligibly small so that one can write

B=pH (B=0 when H=0) (5)

6B = 6uH (6)

Substituting this in Eq. (4), one obtains, using

: ,ﬂ

Now assume that the location of the volume ele-
ment dV is given by the vector ¥. Due to the vir-
tual displacement &¥, there is in dV material
which before the displacement is located at ¥ - 6r,
The p in dV, after the displacement, is then

oW H- 6B -

m

H
fé}fﬁ-dﬁ] av. . (1)
0

" (;-d;) = p(—;) - &re grad (8)
or
6 = - 6_1"-grad N (9)

Substitution of this in Eq. (7) gives




B

H
[ 6'B’+fs? grad nH-dH]av  (10)

v o
or

d:“ fﬁ——-—+f(gradp. W H.-dH] 4V (11)
v

where u is the velocity of the virtual displace-
ment.

A medium moving with velocity u<<c, obeys
the Maxwell's equations

curlE = - %—]? + curl (:x_ﬁ) (12)
- —
curl H = j . (13)

Multiplying the first of these equations by Hav
and the second by EdV, subtracting and integrat-
ing over the whole system, gives

f(—I:I- curl E-E- curl-I-i) dVv =

v (14)

- f [H- e Hecurl(uxB)] 4V - f E.jdv.,
v \'
Since

f(ﬁ-curlﬁ-ﬁ-curl'ﬁ) av =

(15)
fdiv (ExH) dv = I(Exﬁ)-d_s' =0
v S

all that remains is

curl (_Ex E)]dV.(lé)

Using the vector identity

div {ﬁ x (ax 'ﬁ)}

- > - - - (17)
= (uxB)- curlH-H: curl (uxB)
and noting that
fdiv {ﬁx(‘ﬁx'ﬁ)} av =j{f—1’x(£x§)} .dS =
A% s (18)

results in

”I%&

f_f) -_; = I[ﬁ —(Gxg)-curl_ﬁ] av (19)
A\ \'A
or since

(:x _ﬁ)- curlH = (—ﬁx curlﬁ)- "

(20)
—> a —> - — e
B - [E-jdv +[(Bxcur1H)-udV .
\'4 \'4
Substitution of this in Eq. (11) gives
dwm —_ — — —
rranti -fE-j dV+f [ (Bx curlH)
v v (21)
H

+ fgrad pﬁ-dﬁ]- u dv
0

Let f be the volume force density. The force
acting on a volume element dV of the material is
f dV and the work done by the volume forces is

W = f(‘f’- 6r) dV (22)

-
where O6r, as before, is the virtual displacement.
This work is equal to the decrease in the magnetic
energy.

-6 =6W= | (f-67
W= W j(f r)dv (23)
v
or
aw__ L
i —j(ﬁu)dV . (24)
v

Ignoring the irreversible joule heat term

f (E- —;) dV  and comparing Eqgs. (21) and (24)
v
yields H
T-- pﬁ x curl H - f grad M_I:I-dﬁ . (25)
0

Using the vector identity
Hxcurl® = % grad (HZ) - (ﬁ-V) H (26)

gives
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pgrad (HZ) + p(_I:I'V)_ﬁ
H (27)
- jgrad pf—l’-df-l’

0

—- 1
t=-3

H
pgrade-%fgraddez . (28)
0

f=(B-V)H-

N

It is not difficult to see from Fig. 1 that

H H
6j§.dﬁ= fﬁp_ﬁ-d_ﬁ+§-6ﬁ
0
0 (29)
H
1 2 1 2
=L /s I.s
Z[ ndH +2 n6H
0
Thus,
H
gradfg-dﬁ
0
H
1 2 1
=E'Of(gradp.) aH +E-|-Lgrad(H2) . (30)

Using this relation and noting that (V- B)H =0,
one finally obtains
H

T=3V)H+(7B)H - gradf_ﬁ-dﬁ . (31)
0

Eq. (31)can be rewritten in the form

aTx.x oT 9T
_ Xy XZ
fx T 9x * oy * 9z
aTyx aTyy BTYZ
fy = 5w + 3y + y (32)
f Bsz asz aTzz
27 Tox * oy * oz
where
H
Tk,ll = Hk.B.e - Gk'z jB'dH (k, £ =x,v,2)
0
T, 2™ To,x (33)
6k,ﬂ_1 when k = £
6. =0 when k £ £

It shall now be shown that the nine components

Tk 4 Fepresent forces acting on unit elements of
£

area (stresses)., Since the magnet is in static
equilibrium, the resultant force is zero and the
resultant torque is zero.

f?dv+f”t'ds=o (34)
\' s

f(_;x'f’) dv +f (rxt)dS=0 (35)
v S

—
where t = surface force per unit area of S,

- > . .
Introduce three vectors a, b, ¢, which satis-

fy the equation

t:;-gzan +an +an
x X X VY zZ zZ
t =b.n=bn +bn +bn (36)
y X X vy zZ z
t =¢n=cn +cn +cn
Z X X yy Z Z

where n is the unit outward normal to an element
of S. Substitution of these relations in Eq. (34)
gives

ff dv+f§-3ds=f(f +7-2) dV

X p.4

v S \

ff dv+j*-5’ds = f(f +V.b)av
Y y

Vv S \'4

ffzdv+fg-;d8=f(£z+v-:)dv= 0
v S v

n
(=]

1]

0 (37)

f +V+a=0

X

f +V-b=0 (38)
y

f +V.c=0

z

The rotational equilibrium expression (35) gives

[(yfz- zfy)dV + f(ytz- zty) ds =0 (39)
' S
or
r(f zf )dV + f(” B)-ndS = 0 (40)
} - c-zb)'n =
JRAC y
\% s



which gives

-
yfz - zfy +V-(yc-zb) =0 (41)

or

. (42)

- -
yfz - zfy-kyV'c-zV-b+cy-bz =0

0 and

=b .
z
In the same way, it can be shown that aY = bx and

Making use of the fact that £ + v-C
fy+v-§= 0 [Eq. (38)], one finds c_

a =c_ Comparison of Eqs. (32) and (38) gives
—_ — - -
-;a=T i+T j+T Kk
XX Xy Xz
— — - —
b=T i+T j+T Kk (43)
yx Yy yz
- - - -
=T i+T j+T Kk
zx zy zz

where —1: T, and_lz are unit vectors in the x, y,
and z directions. Eq. (36) then becomes

-t =T n +T n +T n
X XX X xXy'y Xz 2z

-t =T n +T n +T n (44)
y yx X Yy y Yz z

-t =T n +T n +T n
z zZX X zZy ¥y 27 2

One sees from these relations that the diagonal
terms act in the direction of the normal to the
surface element and are, therefore, pressures
or tensions. The remaining six components are
shearing stresses.

The '"Maxwell" tensor given by Eqs. (32) and
(33) is a symmetric tensor and can, therefore,
be reduced to three components by transforma-
tion to the principal axes. To find these principal
axes, one solves the determinant

T [

Wi k,lp =0 (45)

where p is the force per unit area of the surface
parallel to the normal. Using Eq. (33), one ob-

tains
H H
- p+fB-dH + p+[B-dH\l H-B=0 (46)
0 0 I
or
H B
- - - -
pl—H'B-de =[Hd (47)
Y o
(B0=BwhenH=0)
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H
- -
p, 3=~ | BrdH . (48)

0

On the principal axes, the Maxwell stress tensor
takes the form

fHdB 0 0
T = 0 -deH 0 (49)
0 0 -fB dH
Substitution of this in Eq. (44) gives
T =-n deB =-n P
x x x 'x
- - -
t =+4n deH =+n p (50)
y y y'y
T, =48, [Ban=+3 o
z z z "z

The principal axes are so oriented that the coor-
dinate axis corresponding to the root 12 is paral-
lel to B, while the other two axes corresponding
to P, and py are perpendicular to B.

III. Applying the Maxwell Stresses to TRIM

The computer program TRIM generates a
triangular mesh of various size and shape trian-
gles. A general interface between air and steel
is shown below as the line ji common to both tri-
angles and extending to infinity perpendicular to
the plane of the paper.

i

A typical field line is also shown. Consider the
Maxwell stresses of the AIR triangle on the sur-

face ji. The outward normal n_ and stresses
t ,andt _ are shown below.
al a2 i
n ta2
a
/ B
a
| / Tee——
Steel
e t
//' Air al
S



Now consider the Maxwell stresses of the
STEEL triangle on the surface ji. The outward
normal n and stressest . andt

R S .. g
triangle on ji are shown below.

of the STEEL
s2

are:
B B s BZ
p., = | HdB = — dB = — ) (51)
al p.o Zp.o
0 0
H H “OHZ BZ
P, = f BdH:f poHAH = ——= P (52)
0 0
B
p ., = j HdB = area above the curve (53)
sl .
of Fig. 1.
B
0
H
P, = BdH = area below the curve (54)
s2 of Fig. 1
0 g. 1.
Note that P, is the energy density of the steel
and P, may be called the coenergy density of the
steel.” It is apparent that the stresses depend not

only on the present values of B and H in the steel,
but also on the B-H characteristics of the steel.

The forces of each stress are obtained by
multiplying by the area perpendicular to the
stress. These forces may then be resolved into
normal and tangential forces which are added al-
gebraically and then resolved into x and y compo-
nents.

IV. Specifying the Desired Calculations

The computer program TRIM produces a
magnetic tape which contains variables that spec-
ify the mesh geometry in "dump'' number 1.
"Dumps'' 2, 3, . . specify a particular solution
and contain quantities such as the vector potential,
the inverse of the permeability, etc. for each
mesh point. The ""dump'' number desired must be
specified as input to FORGY. A single digit
punched into the input card determines if the
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forces are to be calculated on mesh points having
assigned currents. There is no need to specify
which mesh points have assigned currents since
the program searches for them. Another digit
determines if the forces are to be calculated on an
AIR-STEEL interface, If so, the mesh row
(column) coordinates must be specified as well as
the B-H table that was used when the problem was
solved by TRIM. A third digit determines if the
stored energy in the AIR and STEEL is to be cal-
culated. Again, the B-H table is needed for this
calculation,

V. Perfect Dipole Magnet Infinitely Long
(TTEST) Test Case

The cross section of one quarter of this mag-
net is shown below.

B = infinity
v WL LS L L
! NI 4
o I" X ¢
0
—f—
0 x, x,

The general equation to be solved is:

VXV xA = pj (55)
which reduces to
22—
0 A -
— = -k (56)
ox
Hence,
0A .
K_-HJX-}-C]. (57)
K
n. 2
An - TJnx + annlx * CnZ (58)
Bn
q = - ]nx + Cnl (59)

where n is the region number.

At the boundary of region (D and (@), the tan-
gential components of H are continuous and the
vector potentials are equal. Solving the resulting

four equations for C“, CIZ' ch’ CZZ' and sub-
stituting into Eqs. (58) and (59) yields
AL = b (eymx)) x (60)
B, =pi (xy-x)) (61)




2

0 . 2
A2 == |x -xxz+x1 ) (62)
B2 = =p Jx + Hol%, . (63)
The stored energy in Region {1’ is then
y
1
—1-~ f——dd -E(NI)Z— (64
L 2 ¢y =73 - (64)
0 0
Similarly in Region (2), the stored energy is
w " [x -X
== 2 mp? 22 | (65)

7y

Since the field is normal to the pole aty =y ,
the normal force per unit length for Region (D) is
given by:

x
Ty
L - -[ pdx (66)
0
where by Eq. (51),
B Blz
P :f HdB = — (67)
1 2 0
0
Hence,
F B x n (NI) x
S > (68)
Mo 2y
1
Similarly, for Region 2, the normal force is
*2 2
EY. 0(NI) (x,-x,)
x1 Yl

The numerical results of the energy and
force calculations are given in Table I. The
energy is given in joules/meter and the forces
are in newtons for the rectangular geometry test
case. Agreement between the total value calcu-
lated by FORGY and the exact value is seen to be
better than 0.2 percent.

VI. Cylindrical Geometry Test Case

The cross section of a small section of this
case is shown below.
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Reflecting Boundary

Zl -
= 200
Air |cdil | Air Stj/ Air
O G | ® 106
R 1ect1 g Bou%xd/a/ry
o L. Tgectiye Povptaryl L e
0 T r, Ty T, ry

The z axis is an axis of rotation. Hence this case
consists of an infinitely long cylindrical coil hav-
ing inner radius, r , and outer radius, r_, inside
of an infinitely long steel cylinder of inner radius,
r., and outer radius, r

3 4’
The general equation (55) reduces to
o [1 a(rA) i
E(? or | T M- (70)
This results in
r3 rZ
Thg =Mz +C 3 *Ch
(71)
Bz = - pjr + Cnl
The constants C_. and C_ for region (njare ob-

tained by solving the ten réqua.tions in tenunknowns
obtained by applying the conditions that the B /p
and A_ are single valued at r_, Ty Tas and rz
and that rAe is zeroatr= 0 and Ty

The z components of the field for each region
turn out to be

Bl =By + Ky (1'2—1'1) (72)
B2 = B3 + ko) (rz-r) (73)
i} o 3}
B3——|J-0J ,\rz—rl ; (74)
s M | M ]
/3{r52+r42:—4-1';-rf;i—l'
L o o .
B4 }L4B3/M0 (75)
B, = B, (76)



Integrating the energy density over each region
results in the total energy for each region.

w, = Trlel?‘ rlz /Z“o (77)
W= ?1_ {3“oj2 [r;‘ r14)

-8 (jB3+MOer2) [r;—rf) (78)

2

+6 ]1—30+ZjB3r2+|.L0j2r22) rzz— rlzj}
ez, n? o] /g )
w, = 1121342 (rf- r32) /Zu4 (80)
W5 = 1rZ1B5z r52-r42] /ZP-O (81)

From Eq. (50) and the figure below, it follows
that the radial force per unit radian on the steel

at r3 is
zZ
F 1
I _
6 '3 f [P3z P4z] dz (82)
0
H
n
where P, = f BndHn . (83)
0
Hence,
H, 2
/ 2
P3p = BydH, = o0 ' (84)
0
0
Ps2 P32 Pg Ps2
g - ——— e — P
{ 1
B Ai ] Steel | i Air
3 1r i ’ i B5
| I |
% B4v: i
! l
1'3 1'4
Also,
2 2
S
4z 2y, 2p4p07‘ ol g

Therefore, at r_ the force is

3
z
2
F ;.L4 B3
—= =z -r f = -1| 3> dz (86)
[¢] 3 MO Zpo
0
2
v B, zr
=__4_1] 3213 (87)
o o
Similarly, at T, the force is
z
Fr !
o T4 f [Paz-rs;) a2 (88)
0
n B,z r
4 37174
(i) 2 o9
o Ko

The resultant z component of the force at r_, and
r is zero since the areas perpendicular top, .,
Pyp and p_, are zero. The result of this test
case is shown in Table 1. Agreement between the
force calculated by FORGY and the exact value is
about 0.6 percent. The unit of energy is joules
and the unit of force is newton/radian.

VII. General Cylindrical Geometry Case

The real merit of this program is to calcu-
late the steel forces on complicated geometries
such as the cylindrical model of the streamer
chamber magnet at the Zero Gradient Synchro-
tron. The magnet geometry and flux lines are
shown in Fig. 2. The normal components of the
forces on the iron surfaces are shown in Fig. 3.
Because of the difficulty of showing the tangential
components of the forces in Fig. 3, the largest
values are given in Table 2. The forces have
units of newtons per radian.

Summary and Conclusions

It has been shown how the computer program
FORGY uses the results of TRIM to calculate the
forces on each mesh point which has an assigned
current. The Maxwell stress tensor has been
derived for a general case and the stress compo-
nents, and hence, the resultant forces on the
steel surface depend not only on the present value
of B and H, but also on the magnetization curve
of the steel. Two cases, calculated by FORGY
were compared with analytical calculations and
the results agreed to better than one percent. A
third case, which could not be calculated analyt-



ically, shows the real usefulness of this program.
It should be noted that TRIM assumes no volume
deformation due to the magnetic forces and this
assumption also applies to FORGY.
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Table 1

Rectangular Geometry Test Case

FORGY Exact FORGY Force | Exact Force
Region | Energy Energy % Diff. on Pole on Pole % Diff.
1 513.184 513.402 - .04 -20206.82 -20212.68 0.0
{7 2 84.193 85.567 -1.61 - 3316.16 - 3368.78 -1.6
L Total 597.38 598.969 -0.27 -23522.98 -23581. 46 -0.2
Cylindrical Geometry Test Case
. FORGY Exact e r FORGY Force Exact Force % Diff.
Region | Energy Energy % Diff. . .
T, | -8.174x10° -8.125x 10 -0.6
1 3.968 3.935 +0.8 ) ”
Ty +10.90x 10 +10.833x10 -0.6
2 3.262 3.272 -0.3

3 ,5.279::10'4 .5345x10 1| -1.2

4 .1506x10'1 .1497x10'1

+0.6
5 -- .9621x10" -
Total
in air 7.230 7.207 +0.3
Total in
air and 7.245 7.222 +0.3
steel




Table 2

R Z F F R Z F F
r z r z
(inch) (newton/radian) (inch) (newton/radian)
32.227 37.0 -2864. 155524. 1. 250 94.0 -101. - 2060.
34.682 37.0 -8770. 153275. 3.750 94.0 -128. - 6754.
37.136 37.0 -2471. 142588. 6.250 94.0 14, -11300.
39.591 37.0 367. 127547. 8.750 94.0 161. -15956.
42,045 37.0 1091. 108648. 11. 250 94.0 376. -20757.
44.500 37.0 127, 85362, 13.750 94.0 674. -25787.
46.955 37.0 - 768. 60673. 16. 250 94.0 844. -31315.
49. 409 37.0 - 622, 39246. 18.750 94.0 803. -37677.
51. 864 37.0 312. 23749. 21. 250 94.0 957. -44773.
54.318 37.0 546. 12511. 23.750 94.0 1536. -52410.
56.773 37.0 47. 6102, 26.250 94,0 2556. -61257.
35.0 955 92011. ~19184. 28.750 94.0 4870. -71860.
35.0 98.5 77166. - 4530. 31.250 94.0 11852, -83903.
35.0 101.5 62133, - 2790. 33.750 94.0 36825. -90326.
35.0 104.5 55701. - 2132. 36.286 109.0 -6464. -17165.
35.0 107.5 39102. 1489. 38.857 109.0 1009. -14174.
31.0 17.5 - 399. 472. 41. 429 109.0 2306. -10910.
31.0 20.5 -2216. 1526. 44,000 109.0 2152, - 7691.
31.0 23.5 -8154, 3885. 46.571 109.0 1626. - 4638,
31.0 26.5 -27645. 5683. 49, 143 109.0 993. - 2091.
31.0 29.5 -58955. 5501. 51.714 109.0 317. - 516.
31. 0 32.5 -84630. 8952.
31.0 35:5 -95254. 27057.
131 131
35 53
109 109 |
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