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Abstract
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A new method is outlined to compute the ma
gnetic potential produc ed by permanent magnets
in plane and cylindrical symmetry. The space is
divided by an orthogonal network of i lines and j
columns. The potential in the vertices of each
columns is considered as a vector of i compo
nents. The relations between these vectors are
established. Using these relations it is possible
to get equations to calculate the potentials in each
point of the network in function of the potentials
in the points of the contour of the space consid
ered. To get the field in the permanent magnet
space it is necessary to use an iterative method:
this new iterative method is presented.

1. Introduction
FIG. 2

To calculate the forces between a permanent
magnet and an iron yoke in a cylindrical geome
try. we needed to compute the magnetic field
produced by the permanent magnet in the gap be

tween it and the iron yoke. In Fig. lone sees the
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FIG. 1

convenient method ~O obtain more exact numeri
cal calculations. Vie make two other assumptions:

a) The magnetic field is constant along the line a
(Fig. 3);

b) The area D is rectangular.
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geometry of our problem: A is the permanent
magnet. B is an iron yoke of infinite magnetic per
meability (IJ.r = (0). C is the iron yoke on which
is exerted the magnetic attraction to be calculat
ed.

To resolve the problem. we divide the space
D (see Fig. 3) as usual by a network of N rows
and n + k columns (see Fig. 2). We assume the
horizontal and vertical steps are equal; we do so
only to explain more eas ily the proc edure. but it
is neither an essential assumption nor a more

FIG. 3

Both of these statements simplify the pro
gram for the computer. However the mathema
tical statements outlined below would still be
valid even if these assumptions were not made
and the computer could still be used to do the
calculations.

Proceeding are performed for two geome
tries:
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and one gets the equation

MIVi j = iIVIj -1 + iIVIj+1 + Iv0 lj

where M is a matrix represented in Fig. 4 and
IVoLis represented in Fig. 5.

a) Plane with a symmetry axis;
b) Cylindrical geometry.

The problem is resolved in the following
steps:

1) One can find relations between magnetic poten

tials on the contour g (s ee Fig. 3) (potent ial
along line p is zero. along line f is Vo = cons
tant) and the magnetic fields on the contours
not by iterative methods but by direct relations.

2) Through the magnetic properties of the perma
nent magnet. relations are found between the
potential and the fields on the surface of the
permanent magnet (inside the magnet). By as
suming a linear relationship between magnetic
field and the induction. that is

M

,-+ 0 0 0

_1.. ,_..L 0 0 0
4 4

o --i- ,-+ 0 0 0

(6)

3) Using equation (1) and assuming an initial set
of angles of the field in the different points of
the network in the permanent magnet. the equa

tions (written at finite differences)

o 0 -+ ,-t
B=IJ.IJ.H+B.orr

(1)

o o _l ,
4

rot H = 0 (2)

div B = 0 (3)

make possible to get the value of H (HN• HT )
and B (BN• BT) (see Fig. 3) in the points of the
second column inside the permanent magnet.
This method can be repeated until the column
n+k which is the axis of symmetry. Impos
ing the condition BN=O. one obtain the values
of IVln+1 that is the potential on the surface
of the permanent magnet (column n+1). Thus
one can find all the values of B N• BT. HT • HN

at the different points of the permanent magnet:
whith these values one calculates a new set of
(}ij=arctg BN/BT and one repeats the proce
dure. One ste~s the iterative procedure when
the value of B /BT is clos e enough to HN / HT.

II. C alculat~on of the relations between mag
netic field and magnetic potential on the
contour g in the plane geometry with an
axis of symmetry

We define a vector lV1 j as a vector of N com

ponents whose elements are the magnetic poten
tials at the points of the jth column intersecting
the different rows (see Fig. 2). We may easily
establish relations between these vectors equiva
lent to the Maxwell equation for magnetic poten
tial

(4)

Relation (4) may be written to finite differences

1
V.. = -4 (V. 1 ·+v'+1 .+V. '+l+ V, . 1) (5)

1J 1-.J 1 .J 1.J 1.J-
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FIG. 5

Writing the eq. (6) for j=l•...• n one obtains
a system of n linear equations in which we have
n unknown vectors. Thus it is possible to get a
direct symbolic relation between the magnetic po

tentiall VI- (jth column) and the potential on the
contour. The system is shown in Fig. 6.

IV 1,- t' IV 12 = ~-' IV 10+ ~-' I~I,

- M"'\ V I+ IV 1- M-'I V I = M' Iv.l4 , 2 4 3 4 1,;/2

M'I I I I M"'I I M-'I I-4 V / V 3- 4 V 4 = 4 Vo 3

M'/ I I I M'1 Mol I I-- V + V -- V +- V.
4 n-l n 4 L., 4 0 n.l

FIG. 6



FIG. 7

eigenvalues and eigenvectors of the matrix M or
M-1 are easily calculated by the relation

The normal components of the field on the
surface of the permanent magnet at different
points of the n+1th column is a vector of N com
ponents proportional to

(13)

(12)I NI I NI I TIB .= B . +A B
J J-1 j-1

IHT Ij = - A IHNI j + IH T I.; -1

Using the Maxwell equation at finite differen
ces one obtains (12) and (13)

The symbols used in equations (12) and (13) are
defined in Fig. 8; a is the length of the side of a

points considered;
- <5 ij is the angle of the field with respect to the

corumn;
- B r is the residual field characteristic of the

material;
- jJ.ojJ.r is the magnetic permeability;
- N, T indicate the normal or tangential compo-

nent of field or induction (see Fig. 3).

On the surface just inside the ~ermanent

magnet it is possible to express H T and B N as
functions of potentials on the surface s. Using
relations (11} we get HNand BT, that is IV I +2
and IBTI n+1 (x). n

( 8)

( 7)

(k=l, 2, .. , N)
cos krr

N+1

IG.(n)!lul [IHNI} IlA.-11 9.. (n-1) +A. 9.. (n-2) II V I." ~

1(-1 flAp gPP(O)+------ (-1 t:<p gpp(n-1) Ilu Ilvol
J

Calling U the unitary matrix that diagonalize M- 1

we may write the equations that connect IH1\ll nto
the contour potential: the complicated relation is

reported in Fig. 7, where the symbol J.. repre
sent the eigenvalues of the matrix M-1/4 . The

The eigenvalues J..: of matrix M-1 are

J..*
k

1
J.. k

( 9)

A VECTOR WHOSE COMPONENTS ARE
THE NORMAL COMPONENTS OF INDUCTION B
AT COLUMN jth IN THE INTERSECTION OF THE
COLUMN WITH ROW

In this expression Gp(k) are diagonal ma
trices whose elements g p(k) may be computed
by the recurring formuPa

2
g (k) = g (k-1) - J.. g (k-2).

pp pp P pp
(10)

a)

We have now a relation that connects the field on
the permanent magnet surface and the magnetic
potential on the contour p (see Fig. 3).

III. Iterative proceeding to compute the field
in permanent magnet A

1-1 0 0

o 1-1 0

As was stated in the introduction, we need
two relations by which we correlate the magnetic
field to the induction in the permanent magnet.
That is

T 1 T B r a)H .. = --B.. - --cos <5 ..
IJ jJ.ojJ.r IJ jJ.ojJ.r IJ

N 1 N B r
(11)

H .. = --B.. - --sin <5 ij b)
IJ jJ.ojJ.r IJ jJ.ojJ.r

o 0 1 -1 •

b)

FIG. 8

square of network. Using equation (11) we again
calculate Hf and B'r. All these quantities result
functions of magneti~ potential (not known) on per-

where:

- the indices i, j indicate respectively the row
and the column, that is the coordinates of the

(x) - With this symbol we denote a vector at N
component which elements are the values of B T in
the points i, n+1 with i from 1 to N.
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RELATIONS IETWEN POTENTIALS AND GRADIENTS

1 -I.p 0 0

1 -I.p 0 0

manent magnet surface. Using the relation

IBNI n+k = 0

(we remember that column n+k is the axis of
symmetry of our system) one calculates the va
lue of potential and the numerical value of IBNI j

IBTl j IHT Ij IHNl j in the different columns. We

may now compute the new set of d iJ· =
N T=arctgBij /Bij . When the set of the new values

does not change practically from one process to the

next we stop the iterative procedure: we consi
der our problem resolved.

IV. Calculation of field produced by permanent
magnet in case of cylindrical symmetry

A) PLANE CASE

I GRADV1

Gp(N)U IGlAD V,

j GlAD VN

: I
~ V 1 n.'" I

1(l. p -,} Gp (n-I)+! I.~ IG p(n.2)iIUi IV',n" !
i VH,n.l I

o
o

To compute the field in the case of cylindri
cal symmetry the procedures are analogous to
the plane case. In Figs. 9 and 10 we summarize
how the relations already established for the pla
ne symmetry are modified in cylindrical sym
metry.

B) CYLINDRICAl-CASE

I

GlAD V,

P(N)U GIADV,

IGlAD VN

PLANE SYMMETRY

M!v!)vli>1 + IV/j-I + I~
J 4 4 4

CYLINDRICAL SYMMETRY

+~+Y8l
4 4

(Rj = RADIUS OF THE COLUMN)

FIG. 9
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FIG. 10

Calculations result a little more complicated

in cylindrical case, because of the lack of an
easy recurring formula to calculate the polyno

mial terms P k ( A), differently from what happens
to calculate gp(n) in the plane case.

v. Discussion of results

In the plane case, by means of a Fortran
program in lIdouble precision ll , we can resolve a
network of nearly 700 points (24 x 28), with a pre

cision of 1/103. Really this method limits the
number of columns (not of rows, that is practi
cally illimited).

In fact we calculate the values of potential
over the first cofumn and then, using relations
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reported in Fig. 6 it is possible to calculate, step
by step, the value of potential over all the follow
ing columns.

In each operation we have an error that is
nearly seven times larger than the error in each
one of the points of the preceding column.

Over the Nth column we may have an error
7N -1 times larger than over the first column (if
we consider statistic s errors we have only
7(N-1)/2).

We can get better results (and a larger num
ber of columns for the network), using two diffe
rent methods:
1) We calculate potentials from both the sides of

network, until covering central columns. The
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Fortran programs are at concerned's disposal.
In Fig. 11 is reported as example a plot of po
tential calculated.

we may express the potential Vi, j as function
of potentials of eight or more points in the
"neighbourhood of point Pi, j. Naturally we must
take into account the different distances these
points have from Pi, j.

In the cylindrical case coefficients (see Fig.
9) as (1 - aj2r) and (1 + aj2r). make worse preci
sion and limit more the number of columns.

If we use a rectangular (a x b = dimension of
a single rectangle) network we found the same a
stronger limitation on the number of columns:
this may be ilnderstood, because, now, coeffi
cients of fundamental equation are modified, i. e.
instead of equation (5) we have

error becomes ce 7N j 2.
2) Using a different fundamental equation. Instead

of expressing each value of potential !is funct

ion of potential of four surrounding points, i. e.
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