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Abstract

The residual field phenomena in super­
conducting magnets becomes important when
one must operate these magnets at low
as well as high fields. Residual fields
are caused by circulating currents in the
superconducting filaments and circulating
currents between the filaments through
normal conducting metal. The former
produces frequency independent fields;
the latter type of residual field is
frequency dependent.

The theory for residual fields in
various kinds of superconducting magnets
is presented. The reason for the undesir­
able multipole content of the residual
field is explained and methods for
reducing or eliminating the effects of
residual fields in superconducting
magnets are discussed.

I. Introduction

The development of superconducting
magnets for physics application is at the
same level of advancement as conventional
magnets were 20 years ago. The performance
of superconducting magnets has improved
enough that we can consider their use in
many pieces of physics hardware. It is
well known that conventional magnets have
residual fields which adversely affect
their performance at low fields. The iron
in conventional magnet shapes the field
and is the cause of residual field. In
superconducting magnets, the superconduc­
tor shapes the field and causes the
residual field observed by a number of
observers. 1,2,3

The residual field found in copper
iron magnets results from the hysteretic
behaviour of the iron. In superconducting
magnets, hysteretic behaviour is also
responsible for the residual field effects.
The hysteresis observed in superconductors
is caused by circulating currents which
flow in the superconductor and surround­
ing normal metals. Hence, the study of
residual fields is directly related to the
study of superconductor a.c. losses and
instability which are caused by the same
phenomena.

Residual fields are here defined as
fields which are generated by cirCUlating
currents in the superconducting filaments.
These fields have the following properties:

339

1) they have very long time constants, 2)
they vary with previous flux changes.
Penetration effects have been observed,
3) residual fields disappear when the
superconductor temperature is raised
above the critical temperature, 4) the
residual field is very rich in higher
multipole components.

Residual fields can be explained
theoretically by using doublet theory.
This theory, which is developed here, is
adequate to show why residual fields
behave as they do. Before proceeding the
reader should be cautioned that all
calculations are done in rationalized MKS
units with ~o = 4w x 10-7.

II. Basic Theory

The field generated by a single current
I traveling perpendicular to the x,y plane
can be represented in complex form
(Z = x + iy) as follows: 4,5

lJ I 1
H' (Z) = 2wi (Z-Z ) (1)

c

where H,lJ(Z) is the complex conjugate of
the field H'(Z), Zc the location of the
current, and Z the point where the field
is calculated. Equation 1 can be extended
to the calculation of field generated by
cirCUlating currents in superconducting
filaments. The cirCUlating currents in a
superconducting filament can be represen­
ted by a current +1 at Zc1 and a current
-I at Zc2. The distance between these
currents is d and they are inclined at an
angle a (see Fig. 1). We find that the
field generated at Z is

H"lJ(Z) = I [1 1 ]
2ni (Z-Zc1) - (Z-Zc2)

I [ d e
ia

= 21fi (Z-Zcl) (Z-Zc2)

If Zc = (Zcl+ Zc2)/2 and Iz-zcl » d, then
Z-Zc1 + Z-Zc and Z-Zc2 + Z-Zc hence

I d e ia

=
2wi(Z-Zc)2
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Fig. 1: A simple finite current doublet
in the complex plane.

~quation 3 is the classic.l doublet equa­
tion from hydrodynamics. 6 The strength
of the doublet which is defined as r = Id
and the doublet angle a are functions of
the previous flux history of the super­
conducting filament. For a round filament
with a radius a = D/2 we find that the
doublet strength factor is;

a

r = 4 J Jc{x) (a2_x2 )1/2x dx (4)

o

The functional relationship J¢(x) is often
difficult to find because J c 18 a function
of T and H in the superconductor. Parts
of the superconductor which have had no
magnetic field change have no circulating
currents in them. Tbus we find that Jc{x)
really is a J c (H, a, T) where H, Aand T
are functions of x (see Fig. 2).

If the superconducting filament
diameter D is small, one can assume that
tne magnitude of J c is uniform wherever
it exists in the filament. This Jc is a
function ot the local field H which occurs
at the filament boundary x = a.
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c) Current distribution in the 5uperconducting filMlent

Fig. 2: Current and field distribution in
a superconducting filament.

In the simplified model, Jc{x) is either
+Jc{H), -Jc{H), or zero. Using this model
one finds that:

r = &o[ ~ 1 Jc(H) (S)

when the filament has been fully pene­
trated by a particular H, &9= 4/{3w)=O.423.
Hence, for this case d = O.Q23 D and
I = J cwD 2 /8. Equation S can be used even
when a superconductor has not been fully
penetrated by a flux change. Figure 3
shows £0 as a function of the penetration
distance d p • Using our simplified model
we find that

d = ~H = ~B (6)
p ~ poJc(B)

the effect of multiple penetrations can
also be calculated using figure 3. 7

Doublet strength factors may also
be calculated for superconducting fila­
ments which carry a transport current.
The addition of a transport current, in
general, only affects the magnitude of



Fig. 3: Doublet strength factor Vs super­
conductor penetration.

IV. Residual fields in two dimensional
dipole and quadrupole magnets

with no iron

ing a transport current Which is
I b2

H' - -- (10)
w - 2r3

Equations 9 and 10 can be integrated over
a real solenoid. The angle a in equation 9
is a function of the previous magnetic
field direction in the coil. One may de­
fine a = ~ + w/2, where ~ is the flux line
angle with respect to the x, y plane.
When a ~ 0, one can see that behaviour of
equation 9 with respect to w is quite
different from the behaviour of equation
10. Equation 9 also behaves differently
from equation 10 with respect b regard­
less of the value of a. The conclusion
that one may draw from this is as follows:
the residual field which is generated by
circulating currents in a solenoid does
not have the same structure as the field
generated by the transport current. As a
result, superconducting solenoids which
are designed to produce uniform fields in
a particular region will not produce uni­
form residual fields in that region. This
can result in undesirable field inhomo­
geneities even at high fields if the
superconductor diameter is large enough.

(7)
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the circulating current I not the doublet
distance d. When the filament carries a
transport current one finds that;

[
1fD

3
]r = (1 - 0)£0 --8-- Jc(R)

where
(8)

Equations 1 and 3 may be expanded
by a Taylor series. The expansion of
equation 1 is as follows:

The radius of convergence for both power
series is Izcl. Most dipoles and quadru­
poles of interest are symmetrical (see
Fig. 4). As a result llb and 12b can be
further simplified. If one defines
Zc = rc e16c we find that

T I -NaN = - -wi cos(N6c)rc (llc)

00

H'*(Z) = r a' ZN-l (11a)
N=l N

where
, -I Zc-N (llb)aN = 211'i

The expansion of equation 3 is as follows:

JT, the transport current density, is
defined as the transport current IT of the
filament divided by its area 1fD 2 /4.
JT can be no larger than Jc(H,T),
hence 0 < 0 < 1.

III. Residual fields in solenoid magnets

The theory shown in the previous
section can be extended to solenoid magnets.
I shall not dwell on this point because
my main field of interest is superconduct­
ing dipole and quadrupole magnets. Instead
I will present the residual field genera­
ted by a simple circular loop of radius b
Which lies in the x, y plane at w = O.
Along the w axis only the Hw component of
field exists; this is

H" - r cos (6 - a) (9)
w -?

Where r is defined as in the previous
section, r = Ib 2 + w2 , a is the doublet
angle with respect to the x, y plane, and
6 = tan- 1 (w/b). The above equation should
be compared with the field generated on
the w axis by a simple circular loop carry-

where

-r e
ia NZ -(N+l)

2W1 c

(12a)

(12b)
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when N = T(2P+l)
P = 0, 1, 2,

a' = 0N

when N •T(2P+l)
P = 0, 1, 2,

and (12c)

a" = -ll N coS«N+l)0c - a)r -(N+l)
N 1U c

Equations l1c and 12c can be inte­
grated over the two dimensional coil
section. The integral of llc gives the
field generated in the magnet by the
transport current; the integral of 12c
gives the residual field.

V. Residual field in two dimensional
dipOle and quadrupole magnet
with a circular iron shell

when N = T(2P+l)
P = 0, 1, 2,

when N • T(2P+l)
P = 0, 1, 2,

Equations 11 and 12 can be extended
to include a circu¢ar iron shell of radius
R and with ~ =~. When the center of
the shell coincides with the center of the
coil, the field can be calculated by
simply reflecting the current off the
shell. Thus we find the expansion for a
symmetrical dipole carrying transport
current only is as follows:

where T is defined as the fundamental
multipole number (T = 1 is a dipole;
T = 2 is a quadrupole).

HIII(Z)
~

= l
N=l

~I zN-l
N

(13a)

iy

where c~ = aN + bN; aN is defined by

equation l1c and bNis defined as follows:

when N = T(2P+l)
P = 0, 1, 2, •..

(13b)
T I r cbN' = ~11' cos (N0 )----... c R2N

when N ~ T(2P+l)
P=O,1,2, .••

Reflection of a current doublet is
not as simple as the reflection of a
single current. 9 The doublet strength
factor rr of the reflected doublet is
different from the r of the non-reflected
doublet. The doublet angle Qr of a re­
flected doublet is different from the Q
of the non-reflected doublet (see Fig. 5).
Qr and rr can be related to Q and r as
follows:

One should note the similarity of the e
X terms in equation llc and 13b. This is

the key to magnets which will generate a
~ood field wgether or not the iron shell
~s present.

(14a)

and
Fig. 4: A single layer symmetrical 1

dipole magnet with an iron
shell (the crosses mark points
of symmetry).

(14b)
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Using equation 14a and 14b one finds
that:

.."

1
/

Fig. 6: Karlsruhe dipole D-2a cross
section 1) cooling channel, 2)
epoxy spacer, 3) coil support
ring. 4) magnet cold bore tube.

by a complex magnet coil. The program
calculated the residual field in the
aperture of the Karlsruhe Dipole D-2a
coil shown in figure 6. A detailed
description of this magnet is given else­
where in these proceeding, 10 hence only
the data Which is important for calculat­
ing residual fields is given here. The
coil has the following properties:
1) The useful aperture radius is 30 rom;
the inner coil radius (the radius of con­
vergence for the power series) is 40 mm.
2) The coil consists of 420 turns each
of which forms a calculation point for
calculating a, ., r, aA, and b~. These
calculation points lie at the geometric
center of each turn.
3) The coil outer radius is 76 mm. Iron
shells of radii varying from 76 mm to
200 mm were used in the calculation.
4) The coil shown in figure 6 will gene­
rate a transport current field Which is
better than 1 part in 1000 inside the
30 mm useful aperture radius.

The superconductor used in the cal­
culations has a J c versus B characteristic
which is shown in figure 7. The IMI
soldered cable which will be used in
dipole D-2a is believed to have similar
J c versus B characteristics. 11 The dia­
meter of the superconducting filaments is
assumed to be 10 \.1m (the actual dipole
D-2a superconductor will have filament
diameters ranging fom 10 - 12 \.1m) the
assumed normal metal to superconductor
ratio is 1 to 1, and the cable packing
factor (including insulation) is about
0.25. The computer program assumes that
the superconducting filaments are totally
decoupled from one another. (This assump­
tion is valid in real magnets if one
measures residual fields some time after
a flux change.)

(17 )

(16)

(15a)

(15b)

in-

when N i T(2P+l)
P=O,l J 2,
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Fig. 5: Reflected doublet off of a
circular iron shell.

where c" = aN + bN; aN is defined by
equatioM 12c and bN is defined as follows:

when N = T(2P+l)
P = O. 1. 2.

Equations l1c, 12c, 13b, 15b and 16
are used directly in a computer program
to calculate the magnetic fields generated

wher~ cN.= cN + cN. If one desires
duct~on ~nstead Of field then

B-(Z) = IJoH"(Z)

VI. Computer calculations of
residual fields

A superconducting dipole or quadrupole
will generate fields with circulating
and transport currents at the same time.
The resulting field can be found by
adding equations 13a and 15a. Hence, we
find that:
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The program will start at any initial
field and calculate after up to 2 flux
changes (At the initial field the program
assumes that the flux is excluded from the
filament) The program includes the
effects of transport current and notifies
the programer if at sometime during the
magnet cycle, the magnet current exceeds
the critical current. The program defines
the flux line angle ~ in the counterclock­
wise direction from the positive x axis.
By definition a = ~ + ~/2.

Table 1 compares the transport
current and circulating current field
(residual field) after the computer charged
the magnet from 0 to 0.4 T by increasing
the transport current in the coil from
o to 175 A. The superconductor in the coil
has a penetration induction of about 0.06 T.
Nearly all of the superconductor in is
fully penetrated by the flux when the cen­
tral induction reaches 0.2 T. The multi­
pole ratios given in Table 1 illustrate
the fact that a magnet which is designed
to produce a good dipole field will have
a residual field which is rich in higher
multipoles. The predicted 98 % sextupole
at the 30 mm radius is typical of the
sextupole measured at Berkeley and Ruther­
ford. 1,2

Fig. 7: J c Vs B for a typical Nb-Ti
superconductor at 4.2 K.

Residual
induction

Transport
current
induction

Fig. 8: A residual field hysteresis loop.

lIat a radius of 30 mm

.~ 1.0
ti

i
0.5

I
'0

1-0'

Dipole 0.4 T 1.52 x 10-4T
component

Multipole
IInumber Multipole ratio

1 1.0000 1.0000
2

3 0.0003 0.9863
4

5 -0.0000 0.0001
6

7 0.0002 0.0548
8

9 -0.0001 -0.0264
10

11 -0.0002 0.0547

Table 1: Computer calculations of trans­
port current and residual

1nductions at a current
of 175 A in dipole D-2a

w1th no 1ron

T
1210864

Magnetic induction..
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:; 4
u
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0

Figure 8 shows the dipole component
of residual induction as a function of the
central induction generated by the trans­
port current. At the start of the first
cycle there are no circulating currents
hence no residual induction. As the super­
conductor in the coil gets penetrated by
the rising field, the residual field rises.

Soon most of the filaments are penetrated;
the residual field is now controlled by the
J c which is a function of the local H.
As the central field rises, so does the
transport current which generates it.
The combined effect of reduced critical
currents and increased transport current
re~uces the residual field generated at
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be used to calculate the order of magni­
tude of fields generated by superconductor
coupled currents and ordinary eddy
currents as well.

(18)

(19a)

(19b)

when Te « trise' where trise is the rise
time for a f1eld from 0 to Hmax and Te is
the eddy current time constant. The eddy
current time constant for a tube of
diameter D ~nd wall thickness sis;

lJ o D s
Te :r 2N Pv

the eddy current time constant for the
wire or rod of diameter Dis;

Ordinary eddy currents have been the
cause of magnet aberrations in conven­
tional fast cycling synchrotrons for years.
The magnitude of an ordinary eddy current
is proportional to the impressed voltage
and inversely proportional to the
resistance of the circuit. The field
generated by an eddy current is proportio­
nal to the current. This field can be
calculated for a tube or rod as follows:The addition of an iron shell changes

the residual field. The a.c. losses are
also slightly changed but in a different
way. Residual field changes due to the
iron are illustrated in figure 9 (the
magnet was excited from 0 to 4 T and back
to zero in all cases). The primary reason
for the change of sign of the residual
field was due to the change in a when the
iron shell is added. The kind of behaviour
shown in the computer results has not
been observed experimentally to my know­
ledge. The hysteresis loop generated by
one of the iron cases would have a smaller
area than the one shown in figure 8. This
does not mean that the a.c. losses are
smaller. The a.c. losses are a measure of
the magnitude of circulating currents.
The residual field is the sum of positive
and negative fields generated by these
circulating currents.

high fields. The dipole component of resi­
dual field generates a hysteresis loop.
The width of this loop at zero field is
analogous to the coersive force in iron.
The residual field hysteresis loop area
is proportional to the a.c. loss in the
magnet.

The relationship between the resi­
dual field and the a.c. losses is an
important one because it means that mag­
nets with low a.c. losses will also have
low residual fields.

Fig. 9: Residual field components Vs
inner iron radius.

VII. The effect of time dependent
circulating currents in
superconduct1ng magnets

Circulating currents in supercon­
ducting magnets are not limited to the
superconducting filaments. Circulating
current may also take to form of coupled
currents between superconducting fila­
ments and ordinary normal metal eddy
currents. The theory presented here can
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Where Pv is the volume resistivity (ohm m),
N is the exciting field mUltipole number
and lJ o = 4n x 10-7.

The field generated by eddy currents
inside a rod or tube has the same basic
multipole structure as the exciting field
12 (no new multipoles are added, but the
higher multipoles are decayed with respect
to the lower ones). Outside a tube or rod
the eddy current field structure resembles
that of the superconductor residual field.
Thus we find that one can use doublet
theory if r is replaced by:

2r :r 0.4 D Heddy (20)

Multicore superconductors will exhibit
coupled current effects, Which are caused
by large superconductor normal metal eddy
currents. These currents do not behave
precisely like eddy currents because the
current can be limited by the J c of the
superconductor. When the time constant
of the coupled currents is much longer
than the superconducting magnet rise time,
the coupled current behaves like a super­
conducting circulating current. When the
reverse is true the coupled current behave
like ordinary eddy currents. Coupled
currents in superconductors will also
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give rise to fields which are similar in
structure to the residual field. They
will be frequency dependent if the super­
conductor is twisted or transposed.
These fields should be of little impor­
tance in d.c. magnets. In a.c. magnets,
such as superconducting synchrotron
magnets, the field generated by the super­
conductor coupled currents can cause
some problems. To first order, the magni­
tude of the coupled current field is
proportional to the a.c. loss due
to coupled currents. 13

VIII. Summary

Residual fields can be controlled
at injection into a superconducting
synchrotron. The problem is compounded
by the fact that superconductors vary
in properties from batch to batch.
Twenty percent variations in critical
current are not uncommon amoung super­
conductors from a single manufacturer.
Superconductor manufacturers are in
general unconcerned about the low
field properties of their material;
furthermore, the diameters of the fila­
ments in a matrix are often not uniform.

Residual field can be reduced by
1) decreasing the superconductor fila­
ment diameter, 2) reducing the circulat­
ing coupled current by increasing
matrix resistivity, and 3) tailoring the
metallurgical processes to reduce the
superconductor low field J c ' A much
greater understanding of the super­
conductor low field J c is clearly
needed. Measurements at Berkeley indi-

4cate low field J c can be quite high. 1

Residual field and a.c. loss cal­
culations show that the type of super­
conductor used in a synchrotron magnet
will often be determined by residual
fields, not a.c. losses, when low
injection fields are required.
One also finds that magnet to magnet
variations of residual field are very
important (one should avoid building
a synchrotron with superconductor
supplied by two different manufacturers).
Computer, calculations indicate that
alterations of a synchrotron magnet
cycle can have profound effects on the
residual field at injection.

In short, residual fields may be
important in all kinds of superconduct­
ing magnets. Residual fields and other
circulating current fields should not
be ignored during the design of any.
Superconducting magnet which must
produce predictable high uniformity
field over a wide range of current
excitations.
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