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Abstract

I. Introduction

The use of energy-loss spectrometer sys­
tems 1,2 requires that a variable dispersed beam
be presented on the target. This dispersion
plane will normally be either vertical or hori­
zontal. In most cases it is necessary to have
the scattering plane horizontal with subsequent
analysis in a vertical plane. The latter require­
ment allows the independent measurement of mo­
mentum, in first order, to be decoup1ed from the
measurement of scattering angle.

A vertical analysis system specifies that
the dispersion on the target be vertical also.
One way to achieve a dispersion plane which is
vertical is to analyze the accelerator beam with
dipoles having vertical bends. This can be cum­
bersome for large bend angles and may lead to
different floor elevations along the beam analy­
sis system.

A well-known method for rotating the image
plane through 90 0 is by means of a solenoidal
field. In this case we must satisfy the condi­
tion

A magnetic system has been designed which in
TRANSPORT notation effects the transformation
x +-y and y +-x or x +y and y +x on the coordin­
ates of the beam. This is in effect a 90° rota­
tion of the mirror image of the beam cross sec­
tion.

The system consists of a symmetric arrange­
ment of five quadrupole magnets whose symmetry
axes are at 45° to their normal orientation. Lon­
gitudinal disposition of the quadrupo1es along
the beam axis is variable and may be adjusted to
a configuration whose optical length corresponds
to its physical length.

The most obvious use of such a system is
in conjunction with energy-loss spectrometer ar­
rangements. In this case, for spectrometers ar­
ranged to analyze scattered particles in a verti­
cal plane, the beam rotator converts the normal
horizontal dispersion of the typical beam hand­
ling system into a vertical dispersion required
for the energy-loss technique. Such a system has
been designed for the MIT Energy-Loss Spectrome­
ter and similar systems have been proposed for
the LASL high resolution proton spectrometer and
also the DARMSTADT electron 1inac.

L = effective length of solenoid

II. Theory

We shall use the standard TRANSPORT3 nota­
tion for beam transport optics to describe the
operation of the device. In this notation, the
charged particle is represented by a vector

x(x1, x2, x3, x4, xS' x6) = x(x,g,y,¢,~,o)

whose six components are the differential co­
ordinates of the particle with respect to a re­
ference particle. This reference particle (cen­
tral trajectory) has a given position and direc­
tion at the input (origin) and a given momentum.
The coordinate system is defined with origin on
the central trajectory, t-direction along the
ray, x-direction perpendicular to it and in the
median plane of the bends, and y-direction per­
pendicular to this plane (Fig. 1). The following
define our symbols with standard units:

x, radial displacement of an arbitrary
ray (cm)

Q, angle this ray makes in the radial
plane with respect to the central
ray (mr = 10-3 rad)

y, transverse displacement of an arbi­
trary ray (cm)

¢, angle this ray makes in the transverse
plane with respect to the central
ray (mr)

~, path length difference between arbitrary
ray and the central ray (cm)

0, the momentum deviation of the arbitrary
ray from the central ray (%).

k = BQ/(Bp) where Bo is the axial field in­
slde the solenoid and (Bp) is the momentum
of the charged particle.

As a practical example, for electrons of 0.5GeV/c
momentum, a solenoid having a length of 4 meters
and a central field value of 13.1 kG is required.
Apart from being uneconomical, at least in this
case, the resulting solution also introduces into
the magnetic optics strong focussing properties
for which compensation must be made.

A third method, which we will discuss in de­
tail, is a unique solution consisting of a sym­
metric arrangement of five quadrupole magnets
whose symmetry planes are at 45° to their normal
orientation. This solution, as we will show, has
several interesting properties. It is also eco­
nomical and simple to design into new systems or
to retrofit into existing magnetic systems.

= 0+ cos kL
2

where,

*Work supported in part by the U.S. Atomic Energy
Commission under Contract No. AT(11-l)3069.

With the above definitions, any magnetic
system may be represented to first order, by the
matrix R such that at any point along the central
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trajectory the differential coordinates are given
by 6

x.(t) = L R.. X.(O)
1 j=l lJ J

M= TR

has the form

In designing a magnetic system whose trans­
fer matrix will have the form of T we will look
at simple configurations of quadrupoles and
drift spaces. For such a system, its transfer
matrix S has the following form.
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Such a form for Mwould clearly interchange the
radial and transverse planes. The final coordin­
ates of the ray in the radial plane are dependent
only on the initial coordinates in the transverse
plane. Similarly the final coordinates of the
ray in the transverse plane are a function only
of the initial coordinates in the radial plane.

To achieve the desire~ result, the matrix
T must have the following form.

The transfer matrix R is a product matrix of in­
dividual matrices for each magnetic element from
the origin to the point in question. To avoid
confusion later we will define two coordinate
system which we shall use in our discussion.
The laboratory system will be that in which the
x-axis is horizontal and the y-axis is vertical.
The quadrupole axes system will be that in which
the x- and, y-axes will lie along the symmetry
planes of the quadrupole system. This latter
system will in general be rotated through some
angle a with respect to the laboratory system.

Fig. 1. Beam optics coordinate system.

Let us now consider an arbitrary magnetic
system with midplane symmetry consisting of
drifts, dipoles and quadrupoles. It will have a
transfer matrix of the form

o

Rll R12 0 0 0 R16
R21 R22 0 0 0 R26
0 0 R33 R34 0 0

R -
0 0 R43 R44 0 0

RS1 RS2 0 0 RS6
0 0 0 0 0 1

Our objective is to find a new sub-system matrix
T such that the product matrix M,

If we rotate the system S, through some angle a
with respect to our original coordinate system
we will have the desired matrix T.

T = Rotate (a) S Rotate (-a)

183



{x/x)C2 + {y/y)S2 {x/g)C2 + {Y/~)S2 0 0

{g/x)C2 + {~/Y)S2 {g/g)C2 + {¢/¢)S2 0 0

[-(x/x) + {y/y)]CS [-(x/g) + {y/¢)]CS 0 0
T == [-(g/x) + {¢/y)]CS [-(gIg) + (¢/¢)]CS 0 0

0 0 1 0

0 0 0 1

where,

C = cos ().

S = sin ().

in the y plane. Clearly, with appropriate choice
of parameters, an upright image can be formed in
the x z plane and an upside down image in the
y z plane.

with (). = 45°, the corresponding T matrix becomes

More, formally, some of the important ma­
trix elements of this system relative to the
quadrupole axes coordinate system, are

The outlined matrix elements of T must be zero if
we are to satisfy our initial requirements.

III. Design

A. 3-Quadrupole System

To gain further insight into the qualitative
behavior of the proposed rotator we shall start
with the description of a simple symmetric con­
figuration of three quadrupole lenses. The
system utilizes the fact that quadrupole lenses
are strongly astigmatic; therefore, it is possi~

ble to design a system that has widely different
ion-optical properties in two perpendicular
planes. Although the beam twister described here
is not limited to operate between gaussian image
planes only, it is most easily described in such
terms. Consider the object in Fig. 2a, a vertical
arrow. We desire to rotate the image of this by
90° to the horizontal arrow depicted in Fig. 2b.
This can be accomplished as illustrated on the
figure by having an optical system with symmetry
planes rotated by 45° from the vertical and hori­
zontal and otherwise having such properties that
in the x z plane an upright image is formed as
shown in the figure, and in the y z plane an up­
side down image is formed. The simplest such
system is shown in Fig.3. It consists of three
quadrupole singlets, symmetrically displaced,
two focussing in the x plane, and one focussing

Y"" /1", /X
'W

(0) Object Plane

Fig. 2.

x/x = 1
x/Q = 0
g/Q = 1

y/y =-1
y/~ = 0
¢/¢ =-1

y

(b) Image Plane

x

0 0 -1 0 0 0

(Q/x) + (<p/y) 0 -(Q/x) + (<P/y) -1 0 0
2 2

T3-Quad -1 0 0 0 0 0-
-(Q/x) +(P/y) -1 (Q/x) + (<p/y) 0 0 0

2 2
0 0 0 0 '1 0

0 0 0 0 0 1
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further points along the system following the ro­
tator the beam wi 11 conti nue to deform and twi st.
Other points to be noticed are that the system
has the properties of a thin lens of equal focal
length in both planes and a total optical length
of zero in both planes. The addition of an ad­
ditional lens at the end of the system can cor­
rect some of the problems. In the approximation
of thin lenses the strength of this lens can be
adjusted to give (Q/x) = -(~/y).

-.4

B. S-Quadrupole System

In order to achieve exactly our requirements
for the beam rotator we now go to a system of five
quadrupole singlets, symmetrically displaced .
Three of the quadrupoles are focussing in the x
plane and two are focussing in the y plane. T~e

one additional variable field strength along w1th
a variablerihysi-<:al arrangemen~ whic~ may go f~om
a doublet-singlet-doublet conf1gurat10n to a slng­
let-triplet-singlet configuration gives us all the
necessary freedom to meet the conditions. The
important matrix elements of this system are

/" (y/~)" ,,/ ,
" ,,/ ,

" " --

cm/mr

.4

.2

O~=---...L---...l.=::::::-.-.:::----L-----l.-____:~:_..
m

-.2

mr/cm

4 mr /mr

0 0 1 -(x/g) 0 0
0 0 0 1 0 0
1 -(x/g) 0 0 0 0

TS-Quad - 0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

x/x = -1
Q/x = 0
Q/Q = -1

y/y = 1
~/y = 0
~/~ = 1

x/g = -y/~

With a = 4So, the corresponding T matrix becomes

Such a system has all the required proper­
ties of a 90° beam rotator. The image planes are
completely interchanged and non-mixing at any
point following the rotator. It has no focussing
properties external to itself and its equivalent
optical length as given by -(x/g) is variable and
may be made equal to its physical length by
choosing a suitable physical layout of the lenses .
Figures 4,S,and 6 show examples of typical systems
for different physical layouts. The examples
chosen are for arrangements S meters long with
gradients calculated for particle momenta of
.5 GeV/c and effective quadrupole lengths of 19
cm. For each of the examples we show the matr1x
elements plotted along the quadrupole axes system.

Although we have discussed only a few ex-
amples of symmetric five quadrupole systems-
particularly those equivalent to a simple drift
sectiQn- it is clear that a multitude of other
Solut10ns exist. Similarly, the rotat10ns of the

,-----,
I I
I I

3-Quadrupole system. Matrix elements
are shown plotted along the quadrupole
axes system coordinates. Quadrupole
gradients for a particle momentum of
. 5 GeV/c are:
Ql = Q3 = 2.74 kG/cm, Q2 = -2.03 kG/cm.
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Fig. 3.

Since the elements T21 and T43 are not zero
this system does not completely meet our require­
ments and has some serious deficiencies. Al­
though on a plane immediately following the physi­
cal end of this system, the radial and transverse
displacement coordinates will be interchanged,
giving an effective 90° rotation, the correspond­
ing angular displacements will not be completely
interchanged. The effect of this is that at
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Fig. 4. 5-Quadrupole system- doublet-singlet­
doublet arrangement. Matrix elements
are shown plotted along the quadrupole
axes system coordinates. Quadrupole
gradients are: Q1 = Q5 = 2.40kG/cm,
Q2 = Q4 = -2.45kG/cm, Q3 = 2.90kG/cm.
Doublet spacing is 10 em.
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Fig. 5. 5-Quadrupo1e system - singlets configura­
tion. Matrix elements are shown plotted
along the quadrupole axes system coordin­
ates. Quadrupole gradients are:
Q1 = Q5 = .90 kG/em, Q2 = Q4 = -1.18kG/cm,
Q3 = 2.24 kG/em.
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image (actually reflection about half the rota­
tion angle) are not restricted to 90 0 and equi­
valent solutions exist for any ~esired rotation.
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Fig. 6. 5-Quadrupole system- singlet-triplet-sing­
let arrangement. Matrix elements are
shown plotted along the quadrupole axes
system coordinates. Quadrupole gradients
are: Ql = Q5 = .70kc/cm, Q2 = Q4 = -2.60
kG/em, Q3 = 5. 54kc/cm. Triplet spacing
is 10 em.
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