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Abstract

The motion of a particle in vacuum in the field
of an elliptically polarized electromagnetic wave
undergoing total internal reflection, is considered.
Conditions for the stability of the motion are found.
The motion of an equilibrium particle, as well as the
change of the small deviations, is considered. Ex
pressions for the frequencies of the small oscilla
tions are obtained. The possibility of using the
effect for particle acceleration by means of a laser
beam is analysed.

1. Introduction

The use of the strong fields of intense laser
beams for particle acceleration is quite alluring.
However, up to now, none of the proposed methods
appeared to be sufficiently realizable. The main
difficulties are the transverse nature of the field
oscillations and the lack of suitable methods for
decreasing the wave phase velocity. In this report
the results of an investigation of the particle
motion near a surface on which the electromagnetic
wave undergoes total internal reflection, are pre
sented. In the case of such a reflection, in a thin
layer near the surface, the electromagnetic field
has a longitudinal (along the surface) component,
and the phase velocity of the wave propagation along
the surface is less than c. The thickness of the
layer in which the field has a noticeable magnitude
is of the order of wavelength, but it might be of
the order of several thousands of wavelengths if the
wave incidence angle is close enough to the limit
angle of the total internal reflection, and the an
gular divergence of the beam is ~ 10- 6 •

At the same time, the condition H > E which is
valid for the electromagnetic wave in dense media,
remains valid in the surface layer in the vacuum
too. In virtue of this, in some conditions the part
icle motion in this layer appears to be stable. This
phenomenon, in principle, can be used for particle
acceleration.

2. Fields

Let an elliptically polarized plane wave fall
from a medium with refractive index n > I under an
angle e onto the boundary between the vacuum and this
optically transparent medium. Let us take the bound
ary surface as the y = 0 plane, the incident plane
as the xz plane, and direct the x axis towards the
propagation of the refracted beam. In such a frame
the components of the electric vector of the incident
arbitrary elliptical wave will be of the form
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If E2 = 0, then one would obtain a wave linearly
polarized in a plane parallel to the boundary plane.
If E1 ~ 0, then the electric vector would lie in a
plane perpendicUlar to the boundary plane. The
phases ~l and ~2 of the corresponding components,
generally speaking, are arbitrary. Using the Fresnel
formulae separately for the components polarized in
parallel and perpendicUlarly to the boundary plane,
it is not difficult to find the expressions for the
field components in the vacuum. Let us write out
the expressions for the case of total internal re
flection, i.e. when n sin e ~ 1. In this case the
wave phase is of the following form:

corresponding to the solution which decreases for
y > O. For short, let us introduce the following
notations:
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Then the field components in the vacuum will be of
the form



- 598 -

E l := FfCOS¢( ,
/

E,%. =F~ Vt:fJo'" S{,'It~}' H;x;=-J:J/ifi/Sifl, <Pi}'

If,,=-5-cosp,' (6);.J3D .)

1-4= f~.JoCOS ¢2,;

~ =ts (j-f'C) )

C ::: (PXZ/if+ (/!{/6:
Using the smallness of the magnitudes P, T, and

0, one can obtain the following system of three linear
equations which they obey:

3. Equations of motion

The equations of the particle motion in the
field (6) are satisfied by the following equilibrium
values of velocities, phases, and energy:
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The system secular equation, the roots of which
determine the proper frequencies of the small oscil
lations P, T, and 0, in this case is of the following
form:

Such a form of the equilibrium energy makes one
think that two methods of particle acceleration are
possible:

i) Increase of the parameter Bo• The particle en
ergy will increase if either the incident angle e
or the refractive index n depends on the coordinate,
so that Bo -+ 1.

ii) Increase of the parameter F2!F1 • The increase
of the parameter Bo can appear impossible, since the
thickness of the layer in which the field has a no
ticeable magnitude depends on this parameter. In this
case the increase of the energy is possible if the
ratio of the amplitudes of the two components in the
elliptically polarized wave depends on the coordinates
x and z.

In order to study the problem of the stability
of the solution (7), let us consider the behaviour
of the change of the small deviations from the equi
librium values. Let us denote
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Thus in the field (6), stability occurs with
respect to the two degrees of freedom with equal fre~

quencies (8), and an indifferent equilibrium with
respect to the third one (~3 = 0).

Let us note that the stability is provided by
the wave component, the electric vector of which
('\, F1) is parallel to the boundary plane xz. However,
this component has no projection along the x axis and,
therefore, it may provide an acceleration only in the
case when the particle velocity has a projection
along the electric field. The wave ellipticity is
important only for the acceleration by the second
method.

4. Acceleration

Let us consider the possibility of the particle
acceleration by the second method. For this purpose,
we shall assume that the parameter F2!F 1 , as well as
the phases ~l and ~2, are slow functions of x and z.

The equilibrium' values of the velocities Bxs and
BZ5 are in this case determined by the condition of
the constancy of the phases ~lS and ¢2S (3,4):
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Let us now consider the change of the small de
viations from the equilibrium values:

Let us, for simplicity, limit ourselves to consider
ing those particles with phases equal to ~ s = 0;
~2S = n/2. Then the changes of the equili5rium values
Pxs ' Pzs , and £s will be described by the following
equations (Pys = 0):
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Let us consider the most interesting ultrarelati
vistic case when 80 ~ 1. In this case Eqs. (9) have
two integrals of motion:
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Introducing the notation cPzs/llkL = U we obtain
the following equation for U:

the solution of which is of the form

The energy and the longitudinal rnomenttnn can be ex
pressed by means of U and the integrals of motion
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The changes of qx and qz are in this case connected
with each other by the equations

As the study shows, the system (10) describes the
damping stable oscillations only for the values
U2 S 2.

5. Conclusion

The use of the field of the totally reflected
wave for particle acceleration is, at least in princi
ple, possible. It provides all the conditions neces
sary for this purpose. The lack of stability with
respect to one of the degrees of freedom (perpendicu
lar to the boundary plane of the medium) can be filled
by an additional external field (e.g. a magnet). How
ever, such a method will hardly be practically reason
able, since it provides only slow acceleration with
only small energy gain at each stage.
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