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Abstract

Possibilities of particle accelera
tion in proper fields of an intense elect
ron beam are discussed. A self-consistent
steady state is investigated where the ne
cessary field configuration and the longi
tudinal stability of the bunched beam are
provided by a passive retarding system.

1. Introduction

..

Recent progress in the physics of in
tense electron beams 1,2)has advanced two
new tasks. The first is post-acceleration
of such beams to high energies to overcome
limitation imposed by high-voltage techni
ques. The second involves using the large
proper fields and stored energy of such
beams to accelerate other particles, for
example, protons. From this standpo1.D.t,
such a method of acceleration may be readi
ly qualified as a collective method.

Various ingenious schemes of particle
acceleratioA bv beams have been proposed
recently ,3,4,5). However their realisation
as well as the realisation of the classical
collective method 6) is hampered by insuf
ficient understanding of the complicated
collective particle motion. Therefore, a
search for physically simpler methods of
acceleration is warranted.

Considering the problems mentioned
above, one can see that the proper fields
of an intense electron beam, including the
longitudinal electric field, can be much
larger than practical values of external
accelerating fields. Therefore, the possi
bility of achieving beam particle accele
ration in the proper fields appears attrac
tive. The necessary field configuration may
be provided in principle by boundary condi
tions, i.e., by passive strucVural elements.
Although only a small part of the beam may
be accelerated in this BlanDer at 'the expense
of the energy of the other particles, acce
lerated currents unachievable by usual me
thods may be obtained if the initial current
is of order of several tens of kiloamperes.

The simplest feasible schemes of such
"autoacceleration" have been proposed
in 7);. In the first case (Fig. 1), the
fron~ portion of a monochromatic intense
electron beam radia~es in~o a short-eircui
ted line, being decelerated to the energy
WQ -~W. The excited pulse U. is reflected
ali the short-eircuited end, returns to the
beam wi~h opposi~e polarity and accelerates
the trailing portion of the beam to the
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Fig. I

energy Wo+AW. The process may be repeated
if one sweeps away the electrons which have
lost energy. The energy of the remaining
particles increases while the pulse beam
current remains constant in a relativistic
case.
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Fig. 2

Fig.2 shows the redistribution of
energy in an initially monochromatic beam
after passing through a cylindrical pas
sive cavity. The ratio of the energy gain
of the "luckiest" particles to the total
current turns out to be as large as ,..J I~
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ohms.This means that the effective energy
gain can be sufficient for currents of the
order of~I04A.To cascade the acceleration
process one has to remove low-energy parti
cles and maintain complex phase relations
in a chain of cavities. This means using a
distributed system excited by an intense
electron beam, a part of which is accelera
ted in the excited field. The efficiency of
the mechanism will be high if the phase ve
locity of a propagating wave in the system
is close to the beam velocity.In this sense,
one can speak of particle acceleration in
fields of ~erenkov radiation.

2. Beam-excited fields in a retarding
system

a) swn< S

b) swrls (l-lILr:~
c) s<swrf s (1- tiL)

(I)

For qualitative investigation we shall
use the well-known model of a real retar
ding system - a cylindrical waveguide ( ra
dius b) filled with a dielectric medium the
permeabilit~ £ of which is independent of
frequency 8). Let us suppose that the modu
latedbeam is monochromatic and moves along
the Z-axis with a constant velocity 'oc.In
a steady state all values depend on the ra
dial (r) and phase (:x::z-vot) coordinates on
ly.For a scalar potential ~,one has the eq
ation

1 ~ ~ b
24 -1... ~ r - s - -4=n"£ 0 (r x) tr ur r ~x2 - r"

2
s =Po€ - 1

with the boundary condition ;=0 at r=b.Rep
resenting the beam charge density p and the
potential +as Fourier-Bessel series and
looking for a periodic in x solution of Eq.
(I), one obtains for the electric field com
ponent Ezu=sb;lbx

x

2,-r~ cos (~~(x/L-X/L -1/2)s~) I I

Ezu= - T . -WS~ p(x)dX
sJ.n (5fS 1m)

x-L (2)

Swn=PnL/(2~b)=(,~€ - l)~

where L is the modulation period, Ei wn- is
the phase velocity of the wave whose length
is equal to L, and pa is the n-th root of
the Bessel function Jo(Pn).One can see~from
(2) that in a "superl:1gh~" case (tQ,>£-r.: ,
s>O) waves with Bwn= $k (k::Zl, _2 ••• )are
rezonantly excited•.The physical meaning of
this condition is the approximate equality
of the beam velocity and the phase velocity
o~ the waveguidemode with k wavelengths per
~dul~~ion period L. Let us note that for
Sfln> sY& the wave overtakes the beam and
vice versa. T~ slectric field pattern as a
function of s-~~ is presented in Fig. 3
for the simplest case of k=1 and a densi~y

which is uniform over the intervallx\<.e/2<I/2
It should be noted that the field amplitude
strongly depends on the difference between
the beam and wave velocities and for

Fig.,

relatively small current reaches the break
down limit. Moreover, the whole pattern de
pends strongly on the detuning if s>O (see
Fig., ). If the wave velocity is larger than
poc the waveguide has a capacit~ve impedance,
iJ.l the opposite case inductive ). Corres

pondingly, the longitudinal electric field
inside the bunch appears to be focusing(J'ig.
3 a) or defocusing (Fig.3c). In the first
case, one can foresee the possibility of
self-phased steady bunches in the retarding
system (a similar effect in cy~lic accele
rators was discussed in ref. ll )). A longi
tudinal electric field of' such bunches can
be used for acceleration of particles.

Let us note also that bA..~r::~o€b4>/~r.
ThUS, for charge and current Clensities be
ing provideaby the beam oaly the total tran
sverse force acting on the particles is

In the usuperlight" case, the radial force
is opposite to the radial electric field

(i.e., Lorenz force preVails over electro
static repulsion).This opens an interesting
possibility of three-dimensional equilib
rium of bunches in proper fields.

'.Self-phased bunches.

Here we shall investigate the self 
consistent steady state of electron bunches.
To simplify the problem we shall neglect
the transverse motion of particles,assuming,
for example, that the beam moves in the
strong longitudinal magnetic field. Then
the longitudinal motion in the steady elec-

.) As a matter of fact, this is a capacitive
impedance which provides the suppression of
the negative mass instability in a circular
pipe with a dielectric layer 9). MOreover,
one can easily trace the close relationship
between the described phasing mechanism and
longitudinal ~nstabilities in circular ac
celerators 10 ) •
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(8)

jo(r) =1~lJO(Plr/b)/(2nb2Jl(~1))'

thewhere I is the total current through
waveguide. Then one gets from (6)

'osw
fn =

Cs w- s )

+n(r) and -~ are eigenfunction and eigen
values of' the operator

1 d d 4sr jo(r)
r dr r dr + roc£(+o-~m1n)

But a ~eriodic solution must be represented
by a s~ngle (but arbitrary) harmonic, be
cause qn are not multiples. Therefore f -
-'min= tn' ~=2JrS~/L, where L is a period
and

1 d d 2 ~jo(r)
r a; r dr ~n + qn;n : - poc E • (7)

Hence, for the modulation period and the
distribution jo(r) being fixed a self-phased
state is defined.The equilibrium velocity~oc
is still arbitrary and is to be determined
from the energy balance.

To simplify the mathematics let us con
sider the distribution of the current

Bearing in mind that 4>n>O the modulation
period in the self-phased state can not
be too small (i.e. L> 23lbs}2/~1).In other
words the phase velocity of the wave has to
exceed the equilibrium beam velocity. The
longitudinal electric field reaches its
maximum value at the waveguide axis where

E : 21 - sJ. (9 )

z max broE cJl(~l) ~
The space charge distribution is

joer )
p = ~ ( 1 + cos(2~x/L) • (10)

Now, let us calculate the total power
flux W through the waveguide cross-section
S. The flux is the sum of the power trans
ported by the particles

Wpart=JdB rpc
2
f(r,x,p)dp = ~ s i ~JfnjodS

and the flux of the Pointing vector

= Cpo€ J 2
Wfield 45f dB (l>,/br)

(the bar signifies averaging over the pe
riod L). For the chosen current distribu 
tion jo (r) we obt'ain following re.lation bet-
ween ~o'~w and W:

Let us consider a uniform distribution
in the phase plane (f=f :const) within a
phase trajectory H=Ho (r~ and f:O elsewhere.
Then one gets from (4):

2f e 1L
o 2 [(es+ + Ho )2- m;c4y~2]Tc!,

C(l-~o)

P = (es'" + H » m c2",,-1 (5)
'f 0 0 '0

) 2 -1o , (es~ + Ho < moc r 0 '

where 'Yo=(l-f~)-~.
For relativistic particles and large

current densities one may neglect the term
~c4Yo2 because the charge density is com
paratively small in those regions where this
term is of importance. Under this assumptio~

equation (1) becomes linear. For simplicity
we shall assume also that the beam fills all
the space inside the waveguide and has no
discontinuities but all the particles are
inside the bucket and do not slip relative
to the field. These conditions actually mean
that the boundary phase trajectory Ho(r) is
a separatrix, i.e. H(r)=-eS~min(r)~ where
~m" is the minimal value ot ~(z,r) at a ra
drnH r.

A zero harmonic of the potential ,oCr)
is related to a zero harmonic of the cur-
rent density by: r

d+o 4 ~ f /. / /
~ = - epocr J r Jo(r )dr

o
so for our boundary conditions

b r/
"'o(r) - i1!:...-f .9:!/f rl/j (ru)dr '/ (6)
T - EPOCJ r' J 0

r a
and (l-~~) jo(r)

f o:
2ero(e~os + Bo(r))

An alternating component of the po
tential, generally speaking, is a superpo-
sition of harmonics 'n(r)cos(qnx/s), where

tric field Ez(r,x) =Sb,/bx is described by
the Hamiltonian

H : (m~c4 + p2c2)~ - ~opc - est , (4)
where p is the longitudinal momentum cano
nically conjugated to the phase variable x.
A distribution function in the phase plane
(p,x) in a steady state depends on H only.
Thus, the charge density may be obtained
from the distribution function f as £:
=eSf(H)dp.Foran arbitrary dependence f(R)
(within the obvious physical limitation)the
substitution of pinto (1) gives an equation
for the potential ~ under zero boundary con
ditions.
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4. Particle acceleration in
self-phased bunches

From the standpoint of particle acce
leration the main parameter of the investi
gated system is the amplitude of the longi
tudinal electric field. As follows from the
Erevious sections the amplitude readily ac-

ieves a level which is limited by break
downs in the waveguide. One should expect
this because the power transported by a
high current beam is much greater than the
power which ~ght be transmitted in an emp
ty waveguide* ) • Taking as an example
Ez max=O.2 Mv/cm and b=5 cm one obtains for
I p a value about 20-40 kA (for various E~ 1).
This is comparable with total currents now
attainable.

3

Let us discuss first the perspectives
of electron acceleration. The most attrac
tive situation is when the steady state
corresponds to a large value of jo= (l-P§)-~
the injection energy being kept at a low
level (f~l), i.e., when the main part of

the beam radiates energy and only the trai
ling portion absorbs it. Unfortunately, it
follows from Fig.5 that very small values
of 10 are necessary in this case, i.e.,the
effective accelerating field appears to be
too small. The situation might be improved
by removing low energy particles from each
bunch as mentioned in the Introduction.
This leads naturally to gradual decrease
of total current. Supposing for simplicity
that the removed electrons have zero velo
city, i.e., that the total power flux re
mains unchanged, we obtain from (11) and
(I!!) for Yo» I and 1« 1

0
12

'\f2';::!, 4 (WCf- 0). (13),0 3I oI (€-1)% 8(£-1)

~·7T~-h--i-s--is why the field level in the sys
tem could be practically independent of RF
losses in walls.

4

(11)

1

2

Since the introduced power is det~rmined

by the mean injection energy ~moc = We/I,
one gets readily from (9) and I (11) the
values of l' and ~ w (or L) which provide
a self-phasing for fixed ~o and I;

moc~ 1 2------ = ----«3(sy -1)+2)1/1 +Ioe 4~oE 0 0

+ (3 (si~-1 )-2) (1
2/I~+ ~;/s )~+ ~~Io/ (2sI) ) ,

(12)

(PIL/ (2rrb) )2=sw= s2 (1/1
0
+ (1

2/I~+~~/s )~)/~ ~,

w~ere 1 0= EbJI(~I)Ez max' The functions
Y(I,~o) and ~w(I) are shoVlJn in Fig.4.

Fig.4

Ons_can see that for fixed injection ener
~ 'Y and field level 1 0 there are two pos
s1ble steady states. The first one corres
ponds to large currents and large differ
ences between ~ 0 and ~ w. The second st ate
can take place for relatively small cur
rents when the corresponding free wave is
almost synchronous with bunches. In this
case the modulation period L is comparable
with b.

The self-phasing effect appears to be
possible if the injection energy exceeds
some threshold value depending on the
field level and total current. This thre
s~o~d value shown in Fig.5 has in turn a
m1nJ..mum. at some I~ I o • The equilibrium
energy 1n this case appears to be close to
the mean injection energy.
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Tllus; fOfl a current of about 1()2 A, total
power 10 Wt (i.e.,2 Mvx50 kA), 10 =10 kA
and € =2, we obtain ~ ~100. Note that
energies up to severa~ Gevs may be present
in the bunch for this equilibrium value of

\0·
Acceleration of protons and other heavy

particles requires a low velocity ~ oC2 of
bunches combined with the condition ~o£> 1,
so a large ret ardation is necessary. For
1«10 ~o Eq. (12) gives the power of the
electron beam

12
cW ~ ..t9......2. (14)

8se

For the same field level, the parameter 10
is to be much greater than for acceleration
of electrons because of a larg~ value of c:: •
Supposing s=l, (>0=0.1, 1o=3.1Q/A and 1<"'10 ,
the power estimated from (14) is about 200
MW • Apparently, a more realistic esti
mation, taking into account wall losses
could increase this value, but it still
would appear reasonable.

The equilibrium velocity /,>,,=0.1 corres
ponds to 5 Mev protons capturea by an elec
tron bunch. Further acceleration may be pro
vided by an adiabatic variation of parame
ters along the waveguide. In the case under
consideration, (1« 10 ~0 ) ~w~ ~ 0 and the
bunch length (i.e., (~" -1 )~) varies ""'bpC;l.
Therf'ore, ~ 0 increases with decreasing E as
~-y where y is somewhere between %andl/3.
The maximum proton energy is determined by
the system length and by the electric field
level. As for a possible proton current ,
it has to be much less than the electron
current which is evidently large enough.

These estimates are not claimed to be
rigorous or prove the practical realizabi
lity of acceleration in self-phased bunches.
In the first place the model of a real re
tarding system is too rough and the ques
tion is open as to what extent a dielectric
medium can simulate the real properties of
irised waveguides or other practical system~

Among other essential problems, one should
mention transverse motion of the particles,
possibilities of removing slow electrons,
uncertain practical level of the electric

field, possible instabilities, transient
processes etc. We should like merely to di
rect attention here to one possibility of
field generation directly in the vicinity of
accelerated particles.

Large transported power fluxes, the
possibility of self-phasing , the flexibi
lity of the excited field pattern and field
level can alter significantly customary
ideas concerning possible accelerated beam
intensities and requirements for accelera
ting systems.
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