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Abstract

The two variants of the acceleration
of ions captured by the potential well of
dense electron beam are considered:scanning
method and "centrifugal" method.In the lat-
ter case electron beam rotates in the plane
or in the surface of a cone; the ions are
being accelerated slipping along the beam
and shifting onto a greater radius. The in-
fluence of the ions on the depth of the
electron beam potential well during accele-
ration is considered.

For some time a great deal of atten-~
tion has been paid to collective methods
of acceleration. Among these the accelera-
tion of ionms captured into rings of relati-
vistic electrons should be noted /1). But
there are some methods of collective acce-
leration which do not require the use of
electron rings. The idea of one such me-
thod, based op moving foci, was suggested
long ago (see /2/ and also /3/). This idea
can be developed further taking into ac-
count the latest achievements in the field
of intense relativistic electron beams.

Let us consider some features of ion
acceleration by transverse motion (scann-
ing) of an electron beam, A stream of,elec~-
trons I_ having total energy E_= ¥ _mc pas-
ses through a focusing system In tRe direc-
tion OB (Fig.l) and reaches a maximum elec-
tron density at the crossover. By means of
a special deflection system the beam as &
whole is shifted in the transverse direc-
tiop CD. It is known /4/ that a dense elec-
tron beam forms a potential well for ions.
The capture of ions takes place at point C;
then the ions are carried by the field of
the electron beam and accelerated in the
direction CD.

One should keep in mind that the elec-
trons injected at different instants form
a sort of "spiral™ (the curve SAB, Fig.l).
The ions move along this spiral as well as
in the direction normal to it. In /5/ the
case of approximately translationsal motion
of the beam and normal ion motion was con-
sidered. We want to draw attention here to
the case when the ions are slipping along
the beam and belng accelerated, shifting to
greater radii /6/. In this variant of acce-
leration which can be called "centrifugal",
the case of uniform beam rotation is of
particular interest. In this case 8ll times
are equivalent and the possibility of
achieving contipuocus (not pulsed) ion acce-
leration arises. The regime of beam rotation
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can be realized in principle in two main
variants: I) on the surface of a cone
(characterized by apex angle 2A), 2) in
the plane (this variant can be obtained
from the previocus ome putting «=%x/2 ),
Ion acceleration by uniform electron beam
can be schematically described in the fol-
lowing manner (Fig.2). The electron beam
from the injector passes the focusing
system and enters the resonator which ma-
kes the beam rotate along the cone surface.
Further deflection of the beam can be
carried out by means of a static toroidal
magnetic field ("deflector™). As a result
bhe beam is forced to rotate in the plane
normal to its initial direction.

Let us consider the beam to be infi-
nitely fine and to form a sufficiently
deep potential well so that the captured
ions can move only along the beam. The
injection of ions into the electron beam
can be performed near the center O. At an
instapnt ¢ the ion coordinates r,€ ,z are
related as follows

9=¢(t‘ CP:sinoc}: z=retget, @

where the function Qb defines the scann-
ing law and CBe is the velocity of the
electrons. Actually formula (I) expresses
the constraint on ion motion due to the
electron beam. The velocity of apb ion
at ipstant t is

214

J (2)

: |
1 2 g2y 4 dr
ptG) s +r ¢'2<1 CPeSinet dt

{
where (f) is the derivative of (}5 with
respect to t-r/c/se sino . The equation
of ion motion in” terms of variables r,
dr considered as the generalized coordi-
dt npates of an ion can be derived from

Lagrangian 3)
=-Mc%f1-82 QL,jgz_ _.éyg.—
L=-MeY1-F, & Sy ~or P

where M is the rest mass of an ion. In
terms of dimensionless coordinates x,y
the Lagrangian is given by

L=-ter{1-pl[3n e 1-4 J}%m

where tsinK =2%x, r=%p cy, y=dy/dx, Y-
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is the derivative of QSSinoL. with respect
to x~y, and & 1is some scale factor; for
example, in the case of constant beam roy
tation frequency %» we have 22=(27Y) .
The equation of ion metion (3) for Lagran-
gian (4) is
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where Jo= (1- BZ )? .The law of motion
of an ion depends on the type of function

P =9P(x~-y): e.8., ¥ =x-y in the case of
upiform glectron beam rotation or
Y= (x-y)© ip the case of approximately
constant ion acceleration etc. The ion
trajectories for different rates of scan-
ning and different beam rotation frequen-
cies are presented in Fig. I (CD,, CD,,
CD;) and in Fig.3 (0D, OD,, OD 3.

Apn important par&meteg cha?acterizing
the ion motion in the electron beam is the
force component G acting oo the ion in the
direction normal to the electron spiral
(the reaction of congtraint). Knowledge of
this parameter gives us the possibility to
go over to the problem of a real beam which
is characterized by initial beam cross-sec-
tion radius P;, , crossover radius ep .
electron current I_, electron rela i¥istic
factor ¥, initisl angular conovergence T .
Using th8 equation of motion (5) we can ob-
tain the expression for the "normal" force
G in the form
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Let F be the force component normal
to electron spiral and due to the beam
self-field., For an ion to move together
with electrons, the value F must satisfy

the inequality
F2G or e 62 G 2

if we neglect the iom current action ( €
is_the electric field). We can obtaipn for
the expression

£ =~ 60 . c0s8  volts (8)
- 28 cm
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where & 1s the angle between the insta-~

neous beam direction and the eleectron
spiral direction.

The relation between the radius of
the beam envelope and its longitudinal

extent is given by the formula

/nZ ¥onp/p.,

P _72 ;l (9)
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where 1 is the lepgth of the heam in cen-
timeters. A=6.10'9 I/ ¥ rzé =té. e;
2.4».10"“'1e . This formula takes into ac-
count the space charge interaction in the

cage Of zero phase space volume.

Let us consider now the particular
case of uniform beam rotation, In this ca-
se, the quantities ¥ , G and also B, (the
ion redial velocity) may be obtained in
explicit form as functions of the dimen-
sionless radius y = r/R ﬁ’e’ where R= c/w
is the cyclotron radius:

v, (10)
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The expression for J= X (y) is identical
for both variants of the regime of beam
rotation: along the surface of a cone and
in a plane. The apparent difference for
the coarresponding = =/5, (y) expressions
is the appearance of sin‘X in the case of
a cone. It should be noted that ip the
nonrelativistic region (12
12
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where %n is the initial value of Y .In
the extreme case r » R we hhave ¥ ).
This means that the limiting ion velo&ity
is equal in principe to the velocity of
electrons in the beam, which is the basic
idea of collective ion acceleration in ge-
neral. In this same limit, ions tend to

move in the radial direction, that is,ﬁ-78,.~76e

The fubnction G = G(y) in the case of
upiform rotation is expressed as followsa:

G(y)=Mewg(y)
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where (=) ) are gi—
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ven by eqns. eq.(13),
we can express the inequality (7) in ano-~
ther form
25 (14)
S
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where n_2 is the number of electrons in the
beam algng a length equal to the classical
electron radius., The dependence of 6 on y
for uniform bgam rotation is shown in
Fig.4.( V= 10”1/sec; 10, 20, 30), In
the same flgure the depgndence T=Y(F)

is shown for = 10, As the energy of the
ion (or its radius increases the reac-
tion G increases 1nitially as y (in nonre-
lativistic case) reaches a maximum value
and then tends to zero for large radii.

An ion could be actually captured and
accelerated by the beam in accordance with
relations (103 and (II) if inequality (7
or (14) is fulfilled. Therefore curve e&(y)
~ _) calculated on the basis of focusing
condition (9) must be located above curve
G. This requirement restricts the choice
of beam parameters. Let us present some
examples of sets of parameters and ion
energies attaipnables: I) R=50 ¢m, ¥ =10,

= 170 kA, IPn-Svcm, Pc-acm

°r=3, W = 120"Mev} 2) R=50 m, Y, = 20,

= 300 kA '3 cm, 1.2 cm,
'Ce:.l W ;c))bnnev. Pe

We shall also present briefly the re-
sults obtained for nonuniform beam §cann-
ing according to the law = (x=-y)“. The
scanning magnetic fiseld change iste st
chosen to be of the order of 10
gauss/sec and two variants were con51dered.
a) ion injection at r, =125 cm, b) ion in-
Jjection at Ty =0. Eb:aalple of parameter
sets are the Pollowingz I) ry =125 cm,

r___=140 cm = 15, 1,=10 iBs, P, =5 cm,
g"’é’% cm, 7?:. 0,5, W& =~ 100 u&?
‘)‘rn_o, Tngx 80 em, ¥q =15, Ig=

W ~150f1’«$9 Fomy Pe= shems T=.1,

All four examples show that for system
of sufficiently small dimensions the simp-
lest scanning laws ¢~ x=y, P (x-y)
correspond to large values of pulsed beam
power, Therefore thefuture of the methods
considered is completely dependent on the
possibilities of effective beam energy re-
cuperation,

The acceleration processes considered
are based on the use of dense electron
beam. But since accelerated ions also cont-
ribute to electromagnetic fields and for-
ces we shall discuss briefly this phenome-
non.The total force due to electrons and
ions acting orn a given-electron at a dis~

tance r from the spiral axis is equal to

F.= 2mé I,

()
-P’stelccosg[‘ Pec:osé —Ee 3 (15
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where I is the ion current, I = 17 kA,
£(8) = 1-§ cosScos(S+ X _2 nd X 1s
the angle stﬁe

and & . The presen-
ce of ion eurrent alfo altersthe force
acting on a giveniion

_2mc?le T fis 1-pos(s+9] (17
F= ,0‘/32 I:coszg ’.- fo+ 1—'% cosS J

The trajectory of an individusl electron
in the electron beam is described by the

equation
¢ 17

3 4—}3 3=0

¥ (y) is a slowly varying function des-
cribing the action of electron charge and
its compensation by ions. In particular
some sort of laminar motion is possible
when an electron at the beam edge will
stay there continuously, i.e. 5= Psind
and equation (17) tekes the form

3"$+I¥=O ‘-_,U:k}’sin

For the case 147= Const, the sclution of
equation (18) is

Vo 3,73
¥ «/w .

(18)

(19
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where ¢ 1s 8 probability integral. In
the general case,

- (20)
=— 2Lle ginastgS[q-ploels - 1B a‘_@]
e ea:[o ' %21 Pe leF (222d)

and a numerical solutionm of (18) is requir-
ed.

Selfoonstriétion of the beam i.e,
decrease of the value of corresponds

to the condition of positivity of Y
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This is fulfilled when the ion density is
sufficiently large. On the other hand, for
selfconstriction to be accompanied by an
increase in the depth of the potential well
for ions, their density must not be too
large.

1 « pcosS$(8)
I Pelt-posi(s+x)]

The upper limit of the ion density is de-
termined also by the validity of the appro-
ximation of the given electron beam motion,
An analysis of the eq.(18) and inequalities
(21), (22) is cumbersome and is beyond the
scope of this paper. A rough estimate can
be obtained for the simplest case of pa-
rallel electron and ion motion. In such a
cagse the mentioned inequalities can be
reduced to

2
P 1, pY(1-pE)
/5e x82(4‘_ﬁ3¢)< Ie << /se

In conclusion it should be noted that
in this paper we have considered only cer-
taip physical principles of ion accelera-
tion by the centrifugal method and scanning
of an electron beam in the simplest case.
Other more complicated variants are pos-—
sible, e.g. the usenof two intersecting
scanning beams forming moving foci. In

j_/sjcosa5__

(22)
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Fig.I. Schematic diagram of ion accelera
tion by electron beam scanning.

all variants the basic problems are provid-
ing proper electron beam recuperation and
beam scanning and focusing equipment.

We are greatly indebted to Drs.A.N.
Lebedev and V.S.Voronin for helpful dis-
cussions and to Mrs.G.I.Kharlamova for
help in numerical calculations.
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Fig.2. Schematic diagram of ion accelera-
tion by electron beam rotation
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Fig.4. Dependence of G; on Y(the case
of electron_beam uniform rota-
tion V=108 I/sec; Y= 10,20,
30).

Fig.3. Ion trajectories OD ,ODZ,OD in
the process of elec%r'on beaé ro-
tation (Vx> \L»V,)3;08, - the
. 37 Yaw V1 —
instantaneous "splral" position.





