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Abstract

The resonant coupling between the os­
cillations of the odd moments of one beam
and the even moments of another one has
been considered which appear only due to
accelerating field. The resonant condition
is nQe + (n :!: 1)~ = K where n and K are
integer, Qe and Qi are betatron :frequencies
of electrons and ions. The analysis of the
results obtained shows that the maximal po­
larization of the electron-ion rings is li­
mited by these resonances.

It has been noted in Reference (1) that,
when the electron and ion rings are po1ari~

zed, the resonant coupling between the os­
cillation of the odd moments of one beam
and the even moments of another one becomes
possible. The purpose of this paper is to
investigate such resonances. The investiga­
tion 1s performed assuming that 1) statio­
nary solution of the kinetic equation for
polarized beams exists. 2). these stationa­
ry distribution functions coincide with
those for nonpolarized beams.

The paper uses the same methods and
the same notations as in 1 •

1. H:rdrodYnamical Model

Let us consider the coupling resonance
between the dipole oscillations of one
beam and the quadrupole oscillations of
another one. The coupling between these
oscillations appears due to the nonlinea­
rity of the electric field, i.e. in the
presence of nonlinearity the shif1i of the
centre of one beam changes the field gra­
dient in the centre of another one.

On the other hand, the bydrodynamical
model is not correct in the presence of
nonlinearity because this model assumes

the zero frequency shift. So the results
using the bydrodynamical model are ve"r7
approximate (except for the case when the
resonance width exceeds the :trequenC7
spread).

In the presence of the accelerating field
the linearized equations of the axial par­
ticle motion (in the noninertial system of
rings' rest) are given by
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where Z~ and Z~ are the coordinates of the
equilibrium points of electrons and ions.
Eac is the strength of the accelerating

fie1dl1-r =it +.Q te (Q is

the frequency, e 1s the azimuthal angle),
Eez and Eiz are the strengths of 1ihe elect­
ron and ion electric field, respectively,
A is the focusing frequency of the ex­

ternal electromagnetic fieldo
Supposing Ze = Z1 = 0, the next equ­

ation for the electric fields in the equi­
librium points E~z and E~z may be writ1ien
from Eq. (1):
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where Ne and Ni are the numbers of elec~­

rons and ions divided on the leng1ih of the
rings.

We suppose the electric field of
each beam to be given by
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where Z 1s the coordinate of the oentre of
gravity, 9~ and ~2. are the effecti­
ve beam dimensions on Z and 'L ,respecti­
vely,,J.. 1s the arbitrary coefficient of
nonlinearity.

Then we may ob1iain from (1)-C~) the
following system of linearized equations

Let us look for solutions of the sys­
1iem (4) in the form C{, e ,:(I<S -WT:) where

CL is a constant, K is an integer num­
Dar. A:r1ier substi1iuting the exponent sys­
1iem (4) becomes that of linear equations
with the cons1ian1i coefficients. And we
ob1ia1n the dispersion equation
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where
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Analysis of Eq.(5) shows that the
"even-odd" resonances appear when one of
the dipole self-frequencies of some beam
is equal to that of the quadrupole self­
frequencies of another beam. When the coup­
ling between the dipole and quadrupole os­
cillations of different beams is negligible
1ihe resonan1i conditions of the "even-odd"
resonance are given by

Near the "even-odd". resonance the ap­
proximate solution of Eq.(5) is

In the centre of the resonance region
the increment is

2. Solution of Kinetic Equation

The"even-odd" resonance of arbitrar,y
order m~ be investigated using the system
of Vlasov's equations. The solution of
this sys1iem was obtained under the follow­
ing assumptions: 1) the beam is infinite
in the direction normal to z-axis; 2) only
the resonance harmonics of the Fourier ex­
pansion on the betatron oscillations phase
are taken into account; 3) in the

gto =: ~(I-Io) IZo where 10 (X) is
the stationary distribution function, Jr
is the energy of the betatron oscillations.
So we get
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Table I

n 2 3 4- 5d

0,05 0,23 0,24- 0,24- 0,24-

0,1 0,23 0,23 0,23 0,24-

0,2 0,22 0,22 0,20 0,18

0,3 0,21 0,20 0,16 0,13

6 7 8 9 10

0,24- O,2~ 0,23 0,23 0,22

0,22 0,21 0,20 0,19 0,17

0,16 0,13 0,11 0,10 0,10

0,10 0,10 0,04 0,04 0,01

If n < d-1 the coefficients j3I1. J n-1
may be calculated by approximate formula

Practically this formula coincides
with (8), so of.. is equal to 0,5 for the
chosen stationary distribution function.

3. Conclusion

The analysis of the "even-odd" reso­
nances shows "that their increments (if
n < d-1 ) are constant and the widths in

the be"tatron frequency diamond decrease I

with n proportionaly"to [h} + (J1- J)) - f
The distance between "the resonances decre­
ases as n-2 , thUS, for some values of n
the "even-Odd" resonances begin to "over­
lapp"o This effect is very complicated
but an essential decrease of stability in
such systems should be expected.

The "even-odd" resonances are s tabi­
lized by the Landau damping. The stabili1iy
limit decreases as n-1 and therefore the
dipole-quadrupole resonance is the most
dangerous. At reasonable values of para­
meters J.. and d ( J.. "- 1. and d ,..,.., 0,3)

we find that Trn X:::: q /!i"" Vr;;i9, JOe j

and the stabilizing frequency spread is
large and can hardly be realized. Thus,
the "even-odd" resonances are one of im­
portan~ factors limi~ing ~olerable po1ari­
zation and the maximal strength of the
accelerating field in the electron-ion
ring accelerator.

tor the increment of the dipole-quadrupole
resonance in the centre of the resonance
region is

(12)

where
Uj. = K- ege~ u<==I'L~i.~
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Xo ~ 'I = CIJd,/+ d" Ct')~Jb- I-d.
The coefficientS!I1.)h-1 and fi 11.1 n-d

numerically calculate • The calcuiation
results fl n}n-i are given in the Table I.

The coefficients jl n.)11-3 are not tabulated
as they are Oy an order of magnitude less
than !I1,Jn-J •

It n > d-1 the coefficients ft n.Jn~1
rapidly d~~~ease as cOD~ared to Eq.(12).

Prom (9)-(12) we obtain that the re­
sonances appear if U 1= U2.. ,and, con­
sequently, efiJe + J1 41, ::: K • The expression
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