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_Abstract

The electiron ring instabilities caused by ra=-
diative and resistive processes in a waveguide
in the linear approximetion are considered, The
resistive procesges play the essential role for
frequencies below cut-off value and near wave-
guide resonancies,

I, The hydrodynamical equations of small cohe-
rent oscillations of a ring beam in the coordina-
te system moving with the ring ave 1+2);

§+Q402- 15 - 127 = 5 (E-+pBy)
15+ 92%) = &
S+ QO =L (E,-8,)
S i; mr 2 ﬁ rJy
‘where F » & are components of deviation vector
A(6.t) in the cylindrical coordinate system (I,
6,2) véth Zwaxis being along the ring symmetry
axis, and 5 axre perturbation fields averaged
over the ring cross-section, Q=A¢/r- angular freque
ency of particle rotation, 4C - linear velocity,
;S = betatron frequencies caused by external
focusing, dot means d/jt = 9fpt+ 22/26 . In 1i-
near approximation the rjght side of equations
(I) may be presented as /A where 4 is a certain
linear operator, If K(&,t)-vexp{ind—wt} and the
eystem is charasterised by asimuthal symmetry x)
then the action of operator 4 is equivalent te
multiplication by a matrix A,(w)=52%Q,  snd the
system of equatioms (1) Tuns as follows:
A - -»
o b@A=A@A, (2)
where [,(w) is the left side operator of the
system (I),
The dispersion equation for monoenergetic
beam is derived directly from (2):

Det |IL, (@) - ﬁ,,(w)ll =0. (3a)

The particle energy spread is taken into conside=
ration by a well known method 3), In this case
the dispersion equation is presented in the form

_i8 a0 _ Ky 9 .
1 TI{[GH' + n_Q_w (are a"')".(n_Q- )Y a” (n.Q.-w)‘- 0’32‘1—

+4a, —'Q—z-},f(v)dw =0,
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> 2
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_where w=y-V, and f(w) is a functien of particle
energy distribution, Let us consider a monoener-
getic beam with F=). . Away from resonances the
solutions of the equation (3a) are:

for azimuthal oscillations

) mne absence of azimuthal ;ymotry does not
change qualitive results,

s == (Y02 - Y10y

for radial and axial oscillations
- A4 &
lDr-'- = 0» + ’2'5"_ [arr + Q‘_(ara - aor)* g?aoo], (4v)

(4a)

- . 4 (4¢)
Pz = tOz"‘z_Q‘azz ’
where p= W/ — n and substitutions of p=0 for
(4a) and p=14,, for (4b) and (4c) were done in
values Q. . For solving (3a) we assume that

V. )« 1, )

where V= /V/zm;-e‘/mcz, Q is the ring cross-sec—
tion radius, N is the number of particles in the
ring, index "0" merks the value for )=, . The
transverse stability is determined by imaginary
part of values Q,, and[a,, = ¥ (Qpe-Qp)+1:a,q. A8
we shall show below this fact is directly comnec-
ted with the presence of dissipative processes
in the system (radiation, energy losses in the
metal), The stability of asimuthal oscillations
depends on both the imaginary and the real part
of Qg IS

If P,(nz) is the charge density in the undis-
turbed beam then for 8/«Qq  the charge
and current densities take the form

p=-din(pl), = pl-ilw-n2)pk,

where V, is the undisturbed velocity, Using these
expressions we may derive that

p -.-f}’*l-f’dv = éw/l/m!sz, (Z*ﬁZ), n

where (%) nea%B conpl_e_x’ co_pjusgtign. Placing the
eigenvectors 4,=(€.+£8,), A,=9é,,8,=3E,; (€.,8,,

- unit vectors ) in the right side of (7) we
obtain the combinations of values Q; which dif-
for from the right side of (4) by an imsginary
factor. Thus the direct dependence between
ReP (that defines the work of the field upon the
source) and the coherent beam imstability was es~
tablished: if the energy losses in the system are
absent (£eP =0 ) then the transverse oscillations
are atable (Imp.=Jmp, =0 ) and the azimuthal os-
cillations are stable under condition ReQgy > 0
(ImQg=0). Below are comsidered two possible rea-
sons of the energy losses = radiative and resi-
gtive ones,

2. The radiative losses take place only at
frequencies exeeding the waveguide cut~off freque~
ency, In a perfectly conducting waveguide only
agimuthal oscillations should be unstable below
cut=off frequency if Rely, <O (negative mass insta-
bility). Por y?>> ( the asimuthal oscillations
increment iss

= 2@ T, @

where the impedance of the ring in the waveguide
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Jh(x) and J,(x) are Bessel-function and its deriva-
tive, J; and m; are roots of the equations J,(-
= 0 and J(¥)= 0 respectively, X;=V5/8, §;= pir/86,

6 - waveguide radius, h"=(k*- V7Y%, yim= (ki- pi/g})*
k=w/e and the signs of Jm = end few . are
the same, The first texrm of the impedance (9) is
important for the ring being near the waveguide
wall in this case L =2(é-r) . On Fig.I,2 va-
lues 7, and Jmp, are plotted versus 8/;, . The
peaks of Jmp, corresponde to waveguide resonan-
ces W,=mc/g and the breaks are connected with
nonresonant E-waves, According to Fig.Ila the agi-
mathal oscillations are unstable when the beam

is near the wall but there always exists s va=
lue §, such that the oscillations become stable

for &/, > 5, « Because of ReX,# 0 for é/n >, [ng,
(when the cut-off frequency is exeeded) the azi=
muthal oscillations are unstable, The stability
interval inweases with ), and with ring thickness,
The whole frequency interval below tle cut-off value
will be stable for sufficiently large Jo and & .
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Pig.I, Ring impedance in the circular waveguide,
Solid curve = imaginary part of the impedance,
dashed curve = real part, (a) - the impedance
for frequencies below cut-off value, (b) - the
impedance for frequencies above cut-off value,
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Fig.2. Azimuthal increment versus b/:v.'o for n=1

The transverse oscillations are unstable one
1y for é/n>p/(n-Q)s. + The transverse increments
are given by 4
Imp, = 2 __Jf"_._[nifgr . I (x 2

P" 0"‘ 7 { .:‘!’z ,:1("/) ar 1’(‘1): xf h-{ Iﬂ + (10)

T ("ff T L/h;rar) 2[;/.,-1,-;(,%)_ ( %*;n-no,);z, (4 _)] 7’

© 2 2
Imp. =20 s [ 4 (b ) +82n(h+Q, 2
re @, jz{ﬁl(e’r;, /3,;)!-%_1 ) tfn("j_J] +

L hn [ nzrx)-(y,-x-zwﬁ
/ljz_,,z 07;(,«/} R

where (%) corresponds accordingly to modes w =
=(n+Qp;) 2, and summation extends qver those terms
for which the radiation condition [4%"J*>0 is
satisfied, Only slow waves with w=(n-0,,) 22, for
h> @, and w=(n+Q,,;) 2, for n<- @,; are une
stable, On Pig.3 and 4 transverse increments are
plotted versus 4/ for ne]l and Q=0,5. There
exist the radial oscillation resonances for 4/ -
=pe/(n-Q.)p, and the axial ones for bl =V/r-Q)4,.
The breaks on the plots correspond to arising of
nonresonant E-waves for radial oscillations and

H-waves for axial ones,
Impofe,  £,= 2
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Pig.3. Radial increment for n=l and Q.= 0.5.
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rig.4. Axial increment for n=1l and Q,=0.5

In the limit case when hné/r, +oc the expres-

sions (8-II) n into corresponding expressions
given in ref. 4) for a ring in free space.

3. Considering the resistive effects we as-
sume that the wall conductivity is sufficiently
high and the skin~depth is small in comparision
with the wave length, In this case the correspo=-
nding perturberations of electromagnetic fields
are derived as solutions of the homogeneas Maxwell's
equations with boundary condition on the conducting
wall

[A<E]=@-9 8:706 [h"[i""a]], (12)

where E‘ is the electiric field caused by resisti-
ve perturberation, is the magnetic field for
porfoetly conducting wavegnido, €& « conductivi-
ty, A = the outward normal of the conducting boun-
dary, This approach is correct when the condition

3/@ & (w‘a)res)/wres (13)

holds, where §=c/N2irew is the skine
depth, Wp = the cut-off frequency, The resisti-
ve perturberations bdeing small, we take into con-
sideration their influence only below the cut-off
frequency when the oscillations are stable in
the ideal waveguide, let us consider the ring
moving along the waveguide with velocity 4,c .
The boundary conditions for G=occ on the conduc=

tor at rest and on the conductor moving parallel to

its boundary are the same, Therefore the movement
of the ring was not essential for the above ra-
diative instability analysis, The increments are
expressed in numbexr of turnes and thus are inde~
pendent of the kind of a reference coordinate
system, As it will be seen below the resistive
effects depend essentially on the ring movement,
The ring impedance which defines the
ezimuthal stability may be presented in the form

Z,+ 2%, where ¥, is the reactive impedance
tor a porfoct :aveguido (9), J()
= () ¥
Az" (8776); né (kr)’/zfm—{[ ], gg)
()'z[,(,W 0 _npe (14)
(ks J—J—(,,,) "(Xﬁz’*‘) ]}

w 1is oscillation frequency in the coordinate
system moving with the ring, y=\(kn)-x7,);= (!-/s,)
r) <1 (the ring near the wall) it
be found that

AZ,,E ¥ 87:'2"6 (%—1)-1

4,
4 /6 k3
gern it (B1) o 1t
If the frequency is near the cut-off valus but
the condition (I3) is satisfied we obtain

R WY FAUY ] (. __e_)"’z (16)
1/ 6 M* [ (M) 1P

Numerical calculations show that the sum of ex-

pressions (15) and (16) is a good approximation
(error is less than I0%) for AZ, for all fre-
quencies below cut-cff value, The azimuthal ine
crement is derived from formula (8) and equals

Irpe=r[ ¥ (1 )/ Z"ﬂ %zd/i'l/ '

Values of Jmp, versus g/r are plotted on Fig.5
for n=1,2,3, The same analysis of the transverse
oscillations shows that only the slow waves are

unstable similarly to the ideal waveguide case,

Por the ring being near the wall the radial inc-
rement equals

v [, ﬁ 7
20, ,,VSrs{n w\z ) fr pat,
Imp, = @s)

-5/2
/8
320”, 6r~f ( for 1-p,«{.

If the frequency is near the first resonance va-
lue (6/n=p/n-Q.)3, ) but the condition (13) is
satisfied we obta.in
Im mp,. = v(krF . +h%,];
" Q. Al 6r )', M
[(n-mor)ww LAY IV £ %
I3 O,J"(m) J Uk ™
where ki =(n-0,)s, » The aun of 'xpreusions (18)
and (I9) is a good approximation for dmlp,, for
all frequencies below cut=off value, For axial
oscillations the cut-off value is not resonance
frequency therefore approximate expression for
mp, becomes )

Y [1 +(2krt- 20 -n*~
Q. 21’6/" \/kT (

- _){i_jj_](-,‘;—l) for /32 «{,(20)

320#3’ 1/6_;)'2/21 $p:(50,-1)
__1)](-,:‘-1) for ‘{_ﬁ' «,

where krn=(n-G,)5,« If the ring is near the wall
(k(-n)«1 ) then the expressions (18) and_ (20)
for B,«{ are similar to those derived in ),

‘!hn' resistive perturberations of fields 1.n-
orease with and for ); 2 100 they are no more
small in comparision with the perfect waveguide

for p<d,
(15)

(17)

(9)

7’"[01 x
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fielde therefore our approximation becomes inva-
1id in the case,

e, a=(h. )"

h
;
i
'\
i
]
i
|

10 |—

1
.--_--—-——-—-“/ l
i

134 4/’_

Fig.5. Azimuthal increment for resistive instabie=
lity. Solid curve -/31«1 s dashed curve = ),»{.
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4, Now we consider the resonant . cases when
the opposite of condition (13) is satisfied. The
agimuthal equation near the resonance must be
written in the form

z_-ML_J.( P ) )
p —Lﬁoﬁ(é),z )f,’) Z”+Vp+n—we/_(2° ’

where 7 is the impedance (9) without resonant
term and the resonance frequency is

- . M &
a)e -—/’/t 8 +L.§20x0 , Xo_hpafj;zj]_z 6 . (22)

The meaning of fe is clear by comparision with
the expression (9). The solution of equatioen
(21) for the first resonances when (V/)*[Z/«f,"
runs as follows

2/s . - o
[2(&-3)h] hsinZE=Gmp
for 19« Jm/o"’” (23)

()74,
JMPO(O)[L”X"%_] Yy for .ko S g‘mlbéo).

The resonances of sufficiently big numbers
(1512, > & ) play no role and the
expression for Jmp, turns into the corres-
ponding expression of free space, By means of
similar analysis of the transverse oscillations
for the first resonances we shall obtain that
Impry=Tmpy ~ (V/)o)?  when X, « [Impfs
and Impp, ~ V7 (S2./6)" when X, ,>> [Impfs)
where X,= knd/2e, X,= iy Xo /(M -n?) . The resonan-
ces of big number are ignorable too and the ine
crements become equal to the gxpressions descri-
bing the case of free space 4 o

5, It is easy to take into account the
energy spread, As to azimuthal oscillations
ref, shows that for resonance frequencies
with energy spread under consideration the ins-
tability has no threshold, Away from resonances

.'fmpo =

the instability is supressed when the following
condition is satisfied

() 2 3)%.

L7
that is the threshold value A2 ~(V/f)"%, The
analysis of the transverse o¢scillations instabie
1lity shows that both away from resonances and
neaxr them there always exists a threshold valus
of the energy spread, The instability suppressi-
on condition is the following

AQ (o)
Q. 2 |pea = @zl
where P, 4is the solution in case of the monoe
energetic beam,

6. The particular case not mentioned above
is the absence of axial focusing (@), =0 . Then
we obtain

ID2 ==(- aaz)#z'\' ())/t)f’)%

that is the axial and azimuthal increments have
the same order of magnitude. Specific features
of the axial oscillations in this case are the
absence of resonances, so far as ;=0 , and
the absence of frequency regions of stability
in the waveguide,
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