
mITIAL EXPERIENCE OF THE USE OF mTERPRETIVE SOFTWARE FOR BEAMLmE CONTROL

P Adams, R H C Morgan, WA Smith, F Atchison, J C Kerr

Rutherford High Energy Laboratory, Chilton, Didcot, Berkshire, England
(presented by J. Dickson)

Abstract

The computer software can be divided into
f our main parte:

Another noticeable feature of these routines
is that they contain more diagnostic checks of the
state of the hardware than the corresponding
assembly language routines. Not only are checks
made to detect errors but, if at all possible, the
programs attempt to recover or re-adjust the hard
ware to obtain the desired effects. This extra
sophistication is undoubtedly due to the fact that
the overall logic of a program is much easier to
follow in a high-level language, and also to the
fact that such additions increase the size of the
final routine very little.

The very powerful debugging facilities that
an interpreter offers are extremely useful. Errors
in the program are trapped by the interpreter and
reported to the operator. Both the program and the
variables can be examined from the keyboard. The
program can be partially executed and also executed
in 'slow motion'. Errors in the text can be
corrected immediately and on-line using the edit
features of the interpreter. Since control of the
computer resides with the interpreter and not with
the user programs it is very rare for a program
error to cause the system to 'crash'.

Basic Software Systeml ,2,3)

Initially we envisaged that the basic sub
routines, such as that to set a collimator slit to
a given position, would be prograrraned in assembly
language because it involves a reasonable amount of
'bit-checking' to test status, etc. Because of this,
the system allows machine code sub-routines to be
called from disk by a RTI routine. In fact, this
facility has not yet been used; the basic sub
routines have been written in RTI. This has
brought home to us one simple fact - the logic of
these basic control routines is no less complex
when programmed in a high-level language. The
problem of analysis and flow-charting still remains.
This can easily be forgotten when one has a
conversational programming system at one's finger
tips. The time taken to produce a program is
mainly governed by the 'thinking' time. The time
taken to code it and type it into the computer is
comparatively insignificant. For example, the
program to set collimators took five days to
produce the final working routine. The coding
time involved was about 45 minutes t

System sub-routines, interrupt handler and
peripheral drivers.

Alarm scan program.

Interpreter and executive.

High level language (RTI) programs (user
programs) •

a.

c.

d.

b.

Initial Experience

A computer control system using a high level
language interpreter has recently been installed on
the K9 beamline at the Rutherford Laboratory. This
paper describes the initial experience gained with
this system from the users' point of view, with a
description of the facilities that the system
provides. The flexibility of the system is
discussed with reference to the various modes of
running the beamline. Finally there is a
description of the performance of the interpreter
itself with particular reference to program
execution time.

This paper deals with some of the software
aspects of the K9 computer-assisted beamline at the
Rutherford Laboratory. The beamline and the
associated computer hardware are described in
another paper4J being presented at this Conference,
and therefore they will not be dealt with here.
The software system which makes use of a real time
interpreter (RTI) to execute ~ser programs has also
been described elsewherel ,2,3J so only the basic
points will be summarised. The purpose of this
paper is to present the initial experience gained
by users of the system and to make some general
comments on its performance comparing this approach
with the more conventional assembly language system.
We would like to point out that the system being
described does, by no means, represent the ultimate
that can be achieved using the interpretive approach,
nor have we explored more than a small fraction of
possible lines of development for such systems.
Our aim was to produce a basic working system which
would give us experience in implementing and us ing
an interpreter for this type of application. It is
our experience so far that we now describe.

Introduction

It is generally agreed that a system which
allows programs to be written in a high-level
language is easier to use than an 'assembly-only'
system, because program development time is greatly
reduced. However, this advantage is only apparent
to the prograrrnner. With an interpretive system the
user and the programmer can be the same person
(although not necessarily so). In fact one of the
aims of the system is to allow the physicists
running the beamline to use the computer t~) compute,
a rare facility on most beamline computers • With
these facilities the system can be developed on
line so that, although initially only single control
routines are available (e.g. magnet current scan,
collimator set, etc.), more and more complex
setting-up programs can be developed until parts of
the tuning process are completely automated. This
continuing development is entirely in the hands of
the users.



The first three groups are written in assembly
language and are core-resident. The alarm scan
routine (b) runs on interrupt every accelerator
cycle, that is, about every 3 seconds, and checks
that the beamline hardware is set and functioning
correctly.

The RTI programs, written by the users, are
stored on disk in source form and can be called
from the keyboard or by a program. They are
executed interpretively. The user corrununicates
with the interpreter via the keyboard from which
he is able to write or modify his programs or ask
for programs to be executed. Other facilities
available to the user include recursive functions
to perform CAMAC operations and a table that maps
the hardware configuration and characteristics
onto the beamline. This enables the user to write
the names of the beamline elements in his program
or data, and the appropriate addressing and
checking information is automatically acquired
from the table.

Performance

- 438 -

interpreter for use on a Honeywell DDP-516. It is
also intended to translate the interpreter fg5 the
IBM 1800 used to control the PS here at CERN •

Recently much interest has been shown in the
use of remote access terminals to computer systems
and an interpreter, such as RTI, offers a simple
and effective way of achieving this on a beamline
computer. One experiment that has been performed
with the K9 system was to operate the computer
over the switched telephone network. This was done
by using a CAMAC modem module, developed at RHEL,
and an acoustic coupler. The computer was operated
successfully and in spite of occasional periods of
high transmission error rates during three days of
the trial the computer system did not 'crash'.
This is yet another indication of the high degree
of protection that an interpreter provides.

The possible applications for interpreters
are many, both inside and outside the fields of
accelerator and beamline control.

References

One could discuss under this heading many of
the items mentioned in the last section, but the
main point of interest is that of execution speed.
Slow execution time is the price that must be paid
for all the advantageous features that an inter
preter offers. In the data processing field
execution speed is of paramount importance, but in
many control applications slow execution can be
tolerated. After all, the speed of a control
computer is a relative concept. It is measured in
relation to the response time of the devices it
controls, and also to the response time of the
operator.

The basic rate of the PDP-8 implementation of
the interpreter is about 20 ms per statement.
This is greatly influenced by the amount of
mathematics involved in the statement because the
system uses floating point arithmetic realized
entirely through sub-routines. However, the
position of the variables in the variable stack
has little influence on the execution time since
the time taken to search this stack is quite short.

The other basic time quantity that affects the
running time of a program is the time taken to
overlay one program segment with another. This
occurs, for instance, when a routine calls a disk
resident sub-routine. The average time to perform
the overlay is 80 ms, with an absolute maximum of
160 ms. These times are almost entirely governed
by the characteristics of the type of disk drive
used. (The DEC DF32 fixed-head disk).

So far the slow execution speed of the inter
preter has caused us no embarrassment. Even with
this system the computer spends most of its time
waiting for the external devices.

Future Developments

The possibility of using a system similar to
that of K9 for counter beam experiments is being
investigated. This will entail translating the

1)

3)

6)

A Real-Time Interpreter for Computer Control.
P Adams. Ruth. Lab. Report RHEL/R207 Oct. 70.

Beamline Computer Control by Interpreter.
P Adams. Submitted to 1971 Particle Accel.
Conf. Chicago, March 1971.

Interpretive Software for Computer Control.
P Adams. Presented at the European Seminar
on Real-Time Programming, AERE, Harwell,
April 1971.

Hardware for a Computer Control System for
the 1.5m Bubble Chamber Beamline at Nimrod.
R H C MOrgan et al, for presentation at this
Conference.

On-line Experiments in High Energy Physics.
B C Levrat. Proc. 1970 CERN Computing and
Data Processing School. CERN 71-6, p.333.

G Shering, CERN PS Injector. Private
corrununicat ion .


